David Troxell
Cite
Troxell D. Volume Targeted Algorithms. Are they a one-size-fits-all approach to noninvasive ventilation? J Mech Vent 2024; 5(2):69-79.
Abstract
Noninvasive ventilation (NIV) has rapidly expanded as the principle respiratory support strategy in a variety of disease states ultimately resulting in respiratory insufficiency including COPD, overlap syndrome (COPD + comingled sleep disordered breathing), obesity hypoventilation syndrome (OHS), motor neuron diseases, such as amyotrophic lateral sclerosis (ALS), as well as various muscular dystrophies to list just a few examples. In recent years, NIV technology and algorithms have experienced rapid development aimed at improving performance, reliability, comfort, portability, titration efficiency, and treatment outcomes. One specific algorithmic advancement of NIV has been the development of volume targeting algorithms and the creation of new, hybrid modes of NIV. The fundamental feature of volume targeted algorithms is the automation of the inspiratory positive airway pressure (IPAP) or pressure support (PS). In recent years, volume targeted modes have grown in popularity and often are the preferred method of implementing NIV in the home.
There are important differences between manufacturer’s proprietary algorithms that should be understood by the clinician when implementing NIV or when evaluating patient response to NIV. This article will identify some of the unique characteristics of commercially available volume targeted modes and will provide an overview of recent findings in specific cohorts.
Keywords
non-invasive ventilation (NIV), volume-targeted ventilation, volume assured pressure support, chronic obstructive pulmonary disease (COPD), neuromuscular disorders (NMD)
References
1. Park S, Suh ES. Home mechanical ventilation: back to basics. Acute Crit Care 2020; 35(3):131-141. https://doi.org/10.4266/acc.2020.00514 PMid:32907307 PMCid:PMC7483009 | |||
2. Spurr L. The treatment burden of long-term home noninvasive ventilation. Breathe (Sheff) 2021; 17(1):200291. https://doi.org/10.1183/20734735.0291-2020 PMid:34295400 PMCid:PMC8291946 | |||
3. Storre JH, Callegari J, Magnet FS, et al. Home noninvasive ventilatory support for patients with chronic obstructive pulmonary disease: patient selection and perspectives. Int J Chron Obstruct Pulmon Dis 2018; 13:753-760. https://doi.org/10.2147/COPD.S154718 PMid:29535515 PMCid:PMC5836655 | |||
4. Coleman JM 3rd, Wolfe LF, Kalhan R. Noninvasive ventilation in chronic obstructive pulmonary disease. Annals ATS 2019; 16(9):1091-1098. https://doi.org/10.1513/AnnalsATS.201810-657CME PMid:31185181 | |||
5. Duiverman ML, Vonk JM, Bladder G, et al. Home initiation of chronic non-invasive ventilation in COPD patients with chronic hypercapnic respiratory failure: a randomized controlled trial. Thorax 2020; 75(3):244-252. https://doi.org/10.1136/thoraxjnl-2019-213303 PMid:31484786 PMCid:PMC7063397 | |||
6. Oscroft NS, Chadwick R, Davies MG, et al. Volume assured versus pressure preset non-invasive ventilation for compensated ventilatory failure in COPD. Respir Med 2014; 108(10):1508-1515. https://doi.org/10.1016/j.rmed.2014.07.010 PMid:25123526 | |||
7. Morelot-Panzini C, Bruneteau G, Gonzalez-Bermejo J. NIV in amyotrophic lateral sclerosis: The ‘when’ and ‘how’ of the matter. Respirology 2019; 24(6):521-530. https://doi.org/10.1111/resp.13525 PMid:30912216 | |||
8. Orr JE, Coleman J, Criner GJ, et al. Automatic EPAP intelligent volume-assured pressure support is effective in patients with chronic respiratory failure: A randomized trial. Respirology 2019; 24(12):1204-1211. https://doi.org/10.1111/resp.13546 PMid:31012225 PMCid:PMC7007762 | |||
9. McNicholas WT, Hansson D, Schiza S, et al. Sleep in chronic respiratory disease: COPD and hypoventilation disorders. Eur Respir Rev 2019; 28(153):190064. https://doi.org/10.1183/16000617.0064-2019 PMid:31554703 PMCid:PMC9488904 | |||
10. Storre JH, Matrosovich E, Ekkernkamp Eet al. Home mechanical ventilation for COPD: high-intensity versus target volume noninvasive ventilation. Respir Care 2014; 59(9):1389-1397. https://doi.org/10.4187/respcare.02941 PMid:25074944 | |||
11. Xiaomin Zhang, Piaoyu Yang, Chengyao Guo, et al. Effects of volume-assured pressure support noninvasive ventilation in stable COPD with chronic respiratory failure: Meta-analysis and literature review. Heart Lung 2020; 49(3):287-295. https://doi.org/10.1016/j.hrtlng.2020.01.007 PMid:32035642 | |||
12. Söyler Y, Akın Kabalak P, Saral Öztürk Z, et al. Comparing effectiveness of intelligent volume-assured pressure support (iVAPS) vs bi-level positive airway pressure spontaneous/timed (BPAP S/T) for hypercapnic respiratory failure in chronic obstructive pulmonary disease. Int J Clin Pract 2021; 75:e14595. https://doi.org/10.1111/ijcp.14595 PMid:34228853 | |||
13. Maheshwari A, Khatri J, Soni G, et al. Role of average volume assured pressure support mode (AVAPS) in the management of acute exacerbation of chronic obstructive pulmonary disease with type 2 respiratory failure. Cureus 2022; 14(12):e32200. https://doi.org/10.7759/cureus.32200 | |||
14. Shetty S, Parthasarathy S. Obesity hypoventilation syndrome. Curr Pulmonol Rep 2015; 4(1):42-55. https://doi.org/10.1007/s13665-015-0108-6 PMid:26029497 PMCid:PMC4444067 | |||
15. Storre JH, Seuthe B, Fiechter R, et al. Average volume-assured pressure support in obesity hypoventilation: A randomized crossover trial. Chest 2006; 130(3):815-821. https://doi.org/10.1378/chest.130.3.815 PMid:16963680 | |||
16. Murphy PB, Davidson C, Hind MD, et al. Volume targeted versus pressure support non-invasive ventilation in patients with super obesity and chronic respiratory failure: a randomized controlled trial. Thorax 2012; 67(8):727-734. https://doi.org/10.1136/thoraxjnl-2011-201081 PMid:22382596 | |||
17. Patout M, Gagnadoux F, Rabec C, et al. AVAPS-AE versus ST mode: A randomized controlled trial in patients with obesity hypoventilation syndrome. Respirology 2020; 25: 1073-1081. https://doi.org/10.1111/resp.13784 PMid:32052923 | |||
18. Masa JF, Benítez I, Sánchez-Quiroga MÁ, et al. Long-term noninvasive ventilation in obesity hypoventilation syndrome without severe OSA. Chest 2020; 158:1176-1186. https://doi.org/10.1016/j.chest.2020.03.068 PMid:32343963 | |||
19. Murphy PB, Patout M, Arbane G, et al. Cost-effectiveness of outpatient versus inpatient non-invasive ventilation setup in obesity hypoventilation syndrome: the OPIP trial. Thorax 2023; 78(1):24-31. https://doi.org/10.1136/thorax-2021-218497 PMid:36342884 | |||
20. Zatz M, Passos-Bueno MR, Vainzof M. Neuromuscular disorders: Genes, genetic counseling and therapeutic trials. Genet Mol Biol 2016; 39:339-348. https://doi.org/10.1590/1678-4685-GMB-2016-0019 PMid:27575431 PMCid:PMC5004840 | |||
21. Nicholson TT, Smith SB, Siddique T, et al. Respiratory pattern and tidal volumes differ for pressure support and volume-assured pressure support in amyotrophic lateral sclerosis. Ann Am Thorac Soc 2017; 14(7):1139-1146. https://doi.org/10.1513/AnnalsATS.201605-346OC PMid:28410001 | |||
22. Sunkonkit K, Al-Saleh S, Chiang J, et al. Volume-assured pressure support mode for noninvasive ventilation: can it improve overnight adherence in children with neuromuscular disease? Sleep Breath 2021; 25(4):1843-1850. https://doi.org/10.1007/s11325-021-02288-1 PMid:33469734 PMCid:PMC7815273 | |||
23. Orr JE, Chen K, Vaida F, et al., Effectiveness of long-term noninvasive ventilation measured by remote monitoring in neuromuscular disease. ERJ Open Res 2023; 9(5):00163-2023. https://doi.org/10.1183/23120541.00163-2023 PMid:37753280 PMCid:PMC10518857 | |||
24. Raveling T, Vonk JM, Hill NS, et al. Home noninvasive ventilation in severe COPD: in whom does it work and how? ERJ Open Res 2024; 10:00600-2023. https://doi.org/10.1183/23120541.00600-2023 PMid:38348241 PMCid:PMC10860207 |