Aurio Fajardo-Campoverdi, Ehab G. Daoud
Cite
Fajardo-Campoverd A, Daoud EG. Ventilator associated or induced lung injury. Does the name matter? Point and counterpoint. J Mech Vent 2024; 5(3):97-102.
Abstract
The terminology used to describe lung injuries in patients receiving mechanical ventilation has significant implications for clinical practice, research, and communication among healthcare professionals. This point-counterpoint discussion paper explores the debate over the appropriate term to use: “ventilator-associated lung injury” (VALI) or “ventilator-induced lung injury” (VILI).
The first author argues in favor of the term “ventilator-associated lung injury” from epistemology, philosophy, epidemiology and statistics, seems to correctly substantiate the relationship between lung injury as a consequence of inadequate mechanical ventilator programming. According to this perspective, “associated” more accurately reflects the complex interplay of these elements, which together contribute to the development of lung injury in ventilated patients.
The second author advocates for the term “ventilator-induced lung injury,” underscoring the direct causative role of mechanical ventilation in the development of lung injuries. This perspective highlights the specific pathological changes that result directly from mechanical ventilation strategies. According to this prospective “induced” is considered a more precise term, attributing the injury directly to the intervention of mechanical ventilation.
Through this exchange, the authors provide a comprehensive analysis of the clinical and scientific implications of each term, ultimately seeking to guide consensus in the field regarding the most accurate and useful terminology.
Keywords: VALI, VILI
References
1. Black M. Induccion Y Probabilidad. Madrid: Catedra; 1975. | |||
2. Popper K. La lógica de la investigación científica. 1994th ed. Madrid: Tecnos 1935; 39. | |||
3. Grattan-Guinness I. Karl Popper and the “The Problem of Induction”: A Fresh Look at the Logic of Testing Scientific Theories. Erkenntnis (1975) [Internet]. 2004 Aug 13;60(1):107-20. Available from: http://www.jstor.org/stable/20013246 https://doi.org/10.1023/B:ERKE.0000005129.82095.0d | |||
4. Greenland S. Causation and Causal Inference BT – International Encyclopedia of Statistical Science. In: Lovric M, editor. Berlin, Heidelberg: Springer Berlin Heidelberg 2011; 216-221. https://doi.org/10.1007/978-3-642-04898-2_9 | |||
5. Banegas JR, Rodríguez Artalejo F, del Rey Calero J. Popper and the problem of induction in epidemiology. Rev Esp Salud Publica 2000; 74(4):327-339. https://doi.org/10.1590/S1135-57272000000400003 PMid:11031841 | |||
6. Sidebotham D, Popovich I, Lumley T. A Bayesian analysis of mortality outcomes in multicenter clinical trials in critical care. Br J Anaesth 2021; 127(3):487-494. https://doi.org/10.1016/j.bja.2021.06.026 PMid:34275603 | |||
7. Roberts MR, Ashrafzadeh S, Asgari MM. Research techniques made simple: interpreting measures of association in clinical research. J Invest Dermatol 2019; 139(3):502-511. https://doi.org/10.1016/j.jid.2018.12.023 PMid:30797315 PMCid:PMC7737849 | |||
8. Abraira V. Medidas del efecto de un tratamiento (I): reducción absoluta del riesgo, reducción relativa del riesgo y riesgo relativo. Med Fam Semer 2000; 26(11):535-536. https://doi.org/10.1016/S1138-3593(00)73655-0 | |||
9. González-Ramírez AR, Rivas-Ruiz F. Measures of frequency, magnitude of association and impact in epidemiology. Allergol 2010; 38(3):147-152. https://doi.org/10.1016/j.aller.2010.02.002 PMid:20451315 | |||
10. International Consensus Conferences in Intensive Care Medicine: Ventilator-associated Lung Injury in ARDS. Am J Respir Crit Care Med 1999; 160(6):2118-2124. https://doi.org/10.1164/ajrccm.160.6.ats16060 PMid:10588637 | |||
11. Ismaiel N, Whynot S, Geldenhuys L, et al. Lung-protective ventilation attenuates mechanical injury while hypercapnia attenuates biological injury in a rat model of ventilator-associated lung injury. Front Physiol 2022; 13:814968. https://doi.org/10.3389/fphys.2022.814968 PMid:35530505 PMCid:PMC9068936 | |||
12. Garfield BE, Handslip R, Patel BV. Ventilator-associated lung injury. Encycl Respir Med 2021; 406-417. https://doi.org/10.1016/B978-0-08-102723-3.00237-7 PMCid:PMC8128668 | |||
13. Rocco PRM, Dos Santos C, Pelosi P. Pathophysiology of ventilator-associated lung injury. Curr Opin Anaesthesiol 2012; 25(2):123-130. https://doi.org/10.1097/ACO.0b013e32834f8c7f PMid:22395439 | |||
14. Blagev DP, Harris D, Dunn AC, et al. Clinical presentation, treatment, and short-term outcomes of lung injury associated with e-cigarettes or vaping: a prospective observational cohort study. Lancet 2019; 394(10214):2073-2083. https://doi.org/10.1016/S0140-6736(19)32679-0 PMid:31711629 | |||
15. Amado-Rodríguez L, Del Busto C, López-Alonso I, et al. Biotrauma during ultra-low tidal volume ventilation and venoarterial extracorporeal membrane oxygenation in cardiogenic shock: a randomized crossover clinical trial. Ann Intensive Care 2021; 11(1):132. https://doi.org/10.1186/s13613-021-00919-0 PMid:34453620 PMCid:PMC8397875 | |||
16. Sarkar S, Yalla B, Khanna P, et al. Is EIT-guided positive end-expiratory pressure titration for optimizing PEEP in ARDS the white elephant in the room? A systematic review with meta-analysis and trial sequential analysis. J Clin Monit Comput 2024; 38(4):873-883. https://doi.org/10.1007/s10877-024-01158-x PMid:38619718 | |||
17. Katira BH. Ventilator-induced lung injury: classic and novel concepts. Respir Care 2019; 64(6):629-637. https://doi.org/10.4187/respcare.07055 PMid:31110032 | |||
18. Gattinoni L, Collino F, Camporota L. Ventilator induced lung injury: a case for a larger umbrella? Intensive Care Med 2024; 50(2):275-278. https://doi.org/10.1007/s00134-023-07296-1 PMid:38172299 PMCid:PMC10907410 | |||
19. Arcaroli JJ, Hokanson JE, Abraham E, et al. Extracellular superoxide dismutase haplotypes are associated with acute lung injury and mortality. Am J Respir Crit Care Med 2009; 179(2):105-112. https://doi.org/10.1164/rccm.200710-1566OC PMid:18948423 PMCid:PMC2633057 | |||
20. Hong SB, Huang Y, Moreno-Vinasco L, et al. Essential role of pre-B-cell colony enhancing factor in ventilator-induced lung injury. Am J Respir Crit Care Med 2008; 178(6):605-617. https://doi.org/10.1164/rccm.200712-1822OC PMid:18658108 PMCid:PMC2542434 | |||
21. Papazian L, Klompas M, Luyt CE. Ventilator-associated pneumonia in adults: a narrative review. Intensive Care Med 2020; 46(5):888-906. https://doi.org/10.1007/s00134-020-05980-0 PMid:32157357 PMCid:PMC7095206 | |||
22. Vlaar APJ, Toy P, Fung M, et al. A consensus redefinition of transfusion-related acute lung injury. Transfusion 2019; 59(7):2465-2476. https://doi.org/10.1111/trf.15311 PMid:30993745 PMCid:PMC6850655 | |||
23. Magill SS, Klompas M, Balk R, et al. Developing a new, national approach to surveillance for ventilator-associated events. Crit Care Med 2013; 41:2467-2475. https://doi.org/10.1097/CCM.0b013e3182a262db PMid:24162674 PMCid:PMC10847970 | |||
24. Macklin CC. Transport of air along sheaths of pulmonic blood vessels from Alveoli to mediastinum. Arch Intern Med 1939; 64(5):913-926 https://doi.org/10.1001/archinte.1939.00190050019003 | |||
25. Dreyfuss D, Soler P, Basset G, et al. High inflation pressure pulmonary edema. respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 1988; 137(5):1159-1164 https://doi.org/10.1164/ajrccm/137.5.1159 PMid:3057957 | |||
26. Tremblay L, Valenza F, Ribeiro SP, et al. Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 1997; 99(5):944-952 https://doi.org/10.1172/JCI119259 PMid:9062352 PMCid:PMC507902 | |||
27. Paudel R, Trinkle CA, Waters CM, et al. Mechanical Power: A New Concept in Mechanical Ventilation. Am J Med Sci 2021; 362(6):537-545. https://doi.org/10.1016/j.amjms.2021.09.004 PMid:34597688 PMCid:PMC8688297 | |||
28. Bach KP, Kuschel CA, Oliver MH, et al. Ventilator gas flow rates affect inspiratory time and ventilator efficiency index in term lambs. Neonatology 2009; 96(4):259-264. https://doi.org/10.1159/000220765 PMid:19478530 | |||
29. Sottile PD, Albers D, Smith BJ, et al. Ventilator dyssynchrony – Detection, pathophysiology, and clinical relevance: A Narrative review. Ann Thorac Med 2020; 15(4):190-198. https://doi.org/10.4103/atm.ATM_63_20 PMid:33381233 PMCid:PMC7720746 | |||
30. Petrof BJ, Jaber S, Matecki S. Ventilator-induced diaphragmatic dysfunction. Curr Opin Crit Care 2010; 16(1):19-25. https://doi.org/10.1097/MCC.0b013e328334b166 PMid:19935062 | |||
31. Vieillard-Baron A, Matthay M, Teboul JL, et al. Experts’ opinion on management of hemodynamics in ARDS patients: focus on the effects of mechanical ventilation. Intensive Care Med 2016; 42(5):739-749. https://doi.org/10.1007/s00134-016-4326-3 PMid:27038480 | |||
32. Berlin D. Hemodynamic consequences of auto-PEEP. J Intensive Care Med 2014; 29(2):81-86. https://doi.org/10.1177/0885066612445712 PMid:22588373 | |||
33. Dai YL, Wu CP, Yang GG, et al. Adaptive support ventilation attenuates ventilator induced lung injury: human and animal study. Int J Mol Sci 2019; 20(23):5848. https://doi.org/10.3390/ijms20235848 PMid:31766467 PMCid:PMC6929029 | |||
34. Indociated (Induced-Associated). Blog of the society of mechanical ventilation. Accessed June 2024. https://societymechanicalventilation.org/e-learning/indociated-induced-associated/ | |||
35. Hoshino T, Yoshida T. Future directions of lung-protective ventilation strategies in acute respiratory distress syndrome. Acute Med Surg 2024; 11(1):e918. https://doi.org/10.1002/ams2.918 PMid:38174326 PMCid:PMC10761614 |