Ventilator associated or induced lung injury. Does the name matter? Point and counterpoint

Aurio Fajardo-Campoverdi, Ehab G. Daoud

Cite

Fajardo-Campoverd A, Daoud EG. Ventilator associated or induced lung injury. Does the name matter? Point and counterpoint. J Mech Vent 2024; 5(3):97-102.

Metrics

213 Downloads

Abstract

The terminology used to describe lung injuries in patients receiving mechanical ventilation has significant implications for clinical practice, research, and communication among healthcare professionals. This point-counterpoint discussion paper explores the debate over the appropriate term to use: “ventilator-associated lung injury” (VALI) or “ventilator-induced lung injury” (VILI).

The first author argues in favor of the term “ventilator-associated lung injury” from epistemology, philosophy, epidemiology and statistics, seems to correctly substantiate the relationship between lung injury as a consequence of inadequate mechanical ventilator programming. According to this perspective, “associated” more accurately reflects the complex interplay of these elements, which together contribute to the development of lung injury in ventilated patients.

The second author advocates for the term “ventilator-induced lung injury,” underscoring the direct causative role of mechanical ventilation in the development of lung injuries. This perspective highlights the specific pathological changes that result directly from mechanical ventilation strategies. According to this prospective “induced” is considered a more precise term, attributing the injury directly to the intervention of mechanical ventilation.

Through this exchange, the authors provide a comprehensive analysis of the clinical and scientific implications of each term, ultimately seeking to guide consensus in the field regarding the most accurate and useful terminology.

Keywords: VALI, VILI

References

1. Black M. Induccion Y Probabilidad. Madrid: Catedra; 1975.
2. Popper K. La lógica de la investigación científica. 1994th ed. Madrid: Tecnos 1935; 39.
3. Grattan-Guinness I. Karl Popper and the “The Problem of Induction”: A Fresh Look at the Logic of Testing Scientific Theories. Erkenntnis (1975) [Internet]. 2004 Aug 13;60(1):107-20. Available from: http://www.jstor.org/stable/20013246
https://doi.org/10.1023/B:ERKE.0000005129.82095.0d
4. Greenland S. Causation and Causal Inference BT – International Encyclopedia of Statistical Science. In: Lovric M, editor. Berlin, Heidelberg: Springer Berlin Heidelberg 2011; 216-221.
https://doi.org/10.1007/978-3-642-04898-2_9
5. Banegas JR, Rodríguez Artalejo F, del Rey Calero J. Popper and the problem of induction in epidemiology. Rev Esp Salud Publica 2000; 74(4):327-339.
https://doi.org/10.1590/S1135-57272000000400003
PMid:11031841
6. Sidebotham D, Popovich I, Lumley T. A Bayesian analysis of mortality outcomes in multicenter clinical trials in critical care. Br J Anaesth 2021; 127(3):487-494.
https://doi.org/10.1016/j.bja.2021.06.026
PMid:34275603
7. Roberts MR, Ashrafzadeh S, Asgari MM. Research techniques made simple: interpreting measures of association in clinical research. J Invest Dermatol 2019; 139(3):502-511.
https://doi.org/10.1016/j.jid.2018.12.023
PMid:30797315 PMCid:PMC7737849
8. Abraira V. Medidas del efecto de un tratamiento (I): reducción absoluta del riesgo, reducción relativa del riesgo y riesgo relativo. Med Fam Semer 2000; 26(11):535-536.
https://doi.org/10.1016/S1138-3593(00)73655-0
9. González-Ramírez AR, Rivas-Ruiz F. Measures of frequency, magnitude of association and impact in epidemiology. Allergol 2010; 38(3):147-152.
https://doi.org/10.1016/j.aller.2010.02.002
PMid:20451315
10. International Consensus Conferences in Intensive Care Medicine: Ventilator-associated Lung Injury in ARDS. Am J Respir Crit Care Med 1999; 160(6):2118-2124.
https://doi.org/10.1164/ajrccm.160.6.ats16060
PMid:10588637
11. Ismaiel N, Whynot S, Geldenhuys L, et al. Lung-protective ventilation attenuates mechanical injury while hypercapnia attenuates biological injury in a rat model of ventilator-associated lung injury. Front Physiol 2022; 13:814968.
https://doi.org/10.3389/fphys.2022.814968
PMid:35530505 PMCid:PMC9068936
12. Garfield BE, Handslip R, Patel BV. Ventilator-associated lung injury. Encycl Respir Med 2021; 406-417.
https://doi.org/10.1016/B978-0-08-102723-3.00237-7
PMCid:PMC8128668
13. Rocco PRM, Dos Santos C, Pelosi P. Pathophysiology of ventilator-associated lung injury. Curr Opin Anaesthesiol 2012; 25(2):123-130.
https://doi.org/10.1097/ACO.0b013e32834f8c7f
PMid:22395439
14. Blagev DP, Harris D, Dunn AC, et al. Clinical presentation, treatment, and short-term outcomes of lung injury associated with e-cigarettes or vaping: a prospective observational cohort study. Lancet 2019; 394(10214):2073-2083.
https://doi.org/10.1016/S0140-6736(19)32679-0
PMid:31711629
15. Amado-Rodríguez L, Del Busto C, López-Alonso I, et al. Biotrauma during ultra-low tidal volume ventilation and venoarterial extracorporeal membrane oxygenation in cardiogenic shock: a randomized crossover clinical trial. Ann Intensive Care 2021; 11(1):132.
https://doi.org/10.1186/s13613-021-00919-0
PMid:34453620 PMCid:PMC8397875
16. Sarkar S, Yalla B, Khanna P, et al. Is EIT-guided positive end-expiratory pressure titration for optimizing PEEP in ARDS the white elephant in the room? A systematic review with meta-analysis and trial sequential analysis. J Clin Monit Comput 2024; 38(4):873-883.
https://doi.org/10.1007/s10877-024-01158-x
PMid:38619718
17. Katira BH. Ventilator-induced lung injury: classic and novel concepts. Respir Care 2019; 64(6):629-637.
https://doi.org/10.4187/respcare.07055
PMid:31110032
18. Gattinoni L, Collino F, Camporota L. Ventilator induced lung injury: a case for a larger umbrella? Intensive Care Med 2024; 50(2):275-278.
https://doi.org/10.1007/s00134-023-07296-1
PMid:38172299 PMCid:PMC10907410
19. Arcaroli JJ, Hokanson JE, Abraham E, et al. Extracellular superoxide dismutase haplotypes are associated with acute lung injury and mortality. Am J Respir Crit Care Med 2009; 179(2):105-112.
https://doi.org/10.1164/rccm.200710-1566OC
PMid:18948423 PMCid:PMC2633057
20. Hong SB, Huang Y, Moreno-Vinasco L, et al. Essential role of pre-B-cell colony enhancing factor in ventilator-induced lung injury. Am J Respir Crit Care Med 2008; 178(6):605-617.
https://doi.org/10.1164/rccm.200712-1822OC
PMid:18658108 PMCid:PMC2542434
21. Papazian L, Klompas M, Luyt CE. Ventilator-associated pneumonia in adults: a narrative review. Intensive Care Med 2020; 46(5):888-906.
https://doi.org/10.1007/s00134-020-05980-0
PMid:32157357 PMCid:PMC7095206
22. Vlaar APJ, Toy P, Fung M, et al. A consensus redefinition of transfusion-related acute lung injury. Transfusion 2019; 59(7):2465-2476.
https://doi.org/10.1111/trf.15311
PMid:30993745 PMCid:PMC6850655
23. Magill SS, Klompas M, Balk R, et al. Developing a new, national approach to surveillance for ventilator-associated events. Crit Care Med 2013; 41:2467-2475.
https://doi.org/10.1097/CCM.0b013e3182a262db
PMid:24162674 PMCid:PMC10847970
24. Macklin CC. Transport of air along sheaths of pulmonic blood vessels from Alveoli to mediastinum. Arch Intern Med 1939; 64(5):913-926
https://doi.org/10.1001/archinte.1939.00190050019003
25. Dreyfuss D, Soler P, Basset G, et al. High inflation pressure pulmonary edema. respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 1988; 137(5):1159-1164
https://doi.org/10.1164/ajrccm/137.5.1159
PMid:3057957
26. Tremblay L, Valenza F, Ribeiro SP, et al. Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 1997; 99(5):944-952
https://doi.org/10.1172/JCI119259
PMid:9062352 PMCid:PMC507902
27. Paudel R, Trinkle CA, Waters CM, et al. Mechanical Power: A New Concept in Mechanical Ventilation. Am J Med Sci 2021; 362(6):537-545.
https://doi.org/10.1016/j.amjms.2021.09.004
PMid:34597688 PMCid:PMC8688297
28. Bach KP, Kuschel CA, Oliver MH, et al. Ventilator gas flow rates affect inspiratory time and ventilator efficiency index in term lambs. Neonatology 2009; 96(4):259-264.
https://doi.org/10.1159/000220765
PMid:19478530
29. Sottile PD, Albers D, Smith BJ, et al. Ventilator dyssynchrony – Detection, pathophysiology, and clinical relevance: A Narrative review. Ann Thorac Med 2020; 15(4):190-198.
https://doi.org/10.4103/atm.ATM_63_20
PMid:33381233 PMCid:PMC7720746
30. Petrof BJ, Jaber S, Matecki S. Ventilator-induced diaphragmatic dysfunction. Curr Opin Crit Care 2010; 16(1):19-25.
https://doi.org/10.1097/MCC.0b013e328334b166
PMid:19935062
31. Vieillard-Baron A, Matthay M, Teboul JL, et al. Experts’ opinion on management of hemodynamics in ARDS patients: focus on the effects of mechanical ventilation. Intensive Care Med 2016; 42(5):739-749.
https://doi.org/10.1007/s00134-016-4326-3
PMid:27038480
32. Berlin D. Hemodynamic consequences of auto-PEEP. J Intensive Care Med 2014; 29(2):81-86.
https://doi.org/10.1177/0885066612445712
PMid:22588373
33. Dai YL, Wu CP, Yang GG, et al. Adaptive support ventilation attenuates ventilator induced lung injury: human and animal study. Int J Mol Sci 2019; 20(23):5848.
https://doi.org/10.3390/ijms20235848
PMid:31766467 PMCid:PMC6929029
34. Indociated (Induced-Associated). Blog of the society of mechanical ventilation. Accessed June 2024. https://societymechanicalventilation.org/e-learning/indociated-induced-associated/
35. Hoshino T, Yoshida T. Future directions of lung-protective ventilation strategies in acute respiratory distress syndrome. Acute Med Surg 2024; 11(1):e918.
https://doi.org/10.1002/ams2.918
PMid:38174326 PMCid:PMC10761614