Use of the esophageal catheter to detect asynchronies

Victor Perez, Jamille Pasco

Cite

Perez V, Pasco J. Use of the esophageal catheter to detect asynchronies. J Mech Vent 2024; 5(4):

Abstract

Patient-ventilator asynchronies are more usual than we believe in critical care patients, and recognition of such an interaction can be challenging in clinical practice, especially if we don´t have advanced monitoring tools such as esophageal pressure tracing at the bedside.

Reverse trigger,  early cycling, and work shifting are types of asynchronies that must comply with some characteristics in the interaction between ventilator and patient, that could be difficult to detect only with visual analysis of usual waveforms curves showed in mechanical ventilators even for trained operators.

In this sense, esophageal catheter is a very useful tool to correct detection and management, if required, of patient-ventilator interactions.

Keywords: asynchrony, esophageal pressure, reverse trigger, work shifting.

References

1. Blanch L, Villagra A, Sales B, al. e. Asynchronies during mechanical ventilation are associated with mortality. Intensive Care Med 2015; 41(4): 633-641.
https://doi.org/10.1007/s00134-015-3692-6
PMid:25693449
2. Thille AW, Rodriguez P, Cabello Bet al. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med 2006; 32(10):1515-1522.
https://doi.org/10.1007/s00134-006-0301-8
PMid:16896854
3. Mireles-Cabodevila E, Siuba M, Chatburn R. A taxonomy for patient-ventilator interactions and a method to read ventilator waveforms. Respir Care 2022; 67(1):129-148.
https://doi.org/10.4187/respcare.09316
PMid:34470804
4. Rodrigues A, Telias I, Damiani LF, et al. Reverse triggerng during controlled ventilation: from physiology to clinical management. Am J Respir Crit Care Med 2023; 207(5):533-543.
https://doi.org/10.1164/rccm.202208-1477CI
PMid:36470240
5. Akoumianaki E, Lyazidi A, Rey N, et al. Mechanical ventilation-induced reverse-triggered breaths: a frequently unrecognized form of neuromechanical coupling. Chest 2013; 143(4):927-938.
https://doi.org/10.1378/chest.12-1817
PMid:23187649
6. Georgopoulos D. Effects of mechanical ventilation on control of breathing. In Tobin MJ. Principles and Practice of Mechanical Ventilation. New York: Mc Graw-Hill; 2006: 715-728.
7. Núnez -Silveira JM, Gallardo A, García-Valdés P, et al. Reverse triggering during mechanical ventilation: Diagnosis and clinical implications. Medicina Intensiva 2023; 47(11): 648-657.
https://doi.org/10.1016/j.medin.2023.09.004
PMid:37867118
8. Simon PM, Habel AM, Daubenspeck JA, et al. Vagal feedback in the entrainment of respiration to mechanical ventilation in sleeping humans. J Appl Physiol 2000; 89(2):760-769.
https://doi.org/10.1152/jappl.2000.89.2.760
PMid:10926663
9. Baedorf Kassis E, Su HK, Graham AR, et al. Reverse trigger phenotypes in acute respiratory distress syndrome. Am J Respir Crit Care Med 2021; 203(1):67-77.
https://doi.org/10.1164/rccm.201907-1427OC
PMid:32809842 PMCid:PMC7781129
10. Akoumianaki E, Maggiore SM, Valenza F, et al. The application of esophageal pressure measurement in patients with respiratory failure. Am J Respir Crit Care Med 2014; 189(5):520-531.
https://doi.org/10.1164/rccm.201312-2193CI
PMid:24467647
11. Colombo D, Cammarota G, Alemani M, et al. Efficacy of ventilator waveforms observation in detecting patient-ventilator asynchrony. Crit Care Med 2011; 39(11):2452-2457.
https://doi.org/10.1097/CCM.0b013e318225753c
PMid:21705886
12. Dres M, Rittayamai , Brochard L. Monitoring patient-ventilator asynchrony. Curr Opin Crit Care 2016; 22(3):246-253.
https://doi.org/10.1097/MCC.0000000000000307
PMid:27070802