The role of Point of Care Ultrasound (POCUS) and focused echocardiography in optimization of non-invasive mechanical ventilation: from diaphragmatic functionality to hemodynamic monitoring

Mauro Pavone, Giuseppina Biondi, Claudio Matruzzo, Federico Rapisarda, Leda Claudia D’Amico, Raimondo Gullo,  Maira Cristina Circo, Sebastiano Emanuele Torrisi, SIlvia Puglisi, Daniele Lombardo, Maria Teresa Bellanti, Domenico Compagnone, Rosario Lamberto Oliveri

Cite

Pavone M, Biondi G, Matruzzo C, Rapisarda F, D’Amico LC, Gullo R, Circo MC, Torrisi SE, Puglisi S, Lombardo D, Bellanti MT, Compagnone D, Oliveri RL. The role of Point of Care Ultrasound (POCUS) in optimization of non-invasive mechanical ventilation: from diaphragmatic functionality to hemodynamic monitoring. J Mech Vent 2023; 4(4):151-158.

Abstract

This case shows the use of ultrasound guidance to optimize non-invasive mechanical ventilation for a 62-year-old patient with a complex medical history. Point-of-care ultrasound (POCUS) was used to assess diaphragmatic function and hemodynamics, leading to adjustments in ventilator setting. The approach improved gas exchange, resolved respiratory acidosis, and enhanced hemodynamics, providing a promising strategy for ventilator management in complex clinical cases.

Keywords: Non-Invasive Mechanical Ventilation, Point-of-Care Ultrasound, Diaphragmatic Ultrasound, Focused Echocardiography, Ventilator-Induced Diaphragmatic Dysfunction, Hemodynamics.

References

1. Boussuges A, Finance J, Chaumet G, Brégeon F. Diaphragmatic motion recorded by M-mode ultrasonography: limits of normality. ERJ Open Res 2021; 7(1):00714-2020.
https://doi.org/10.1183/23120541.00714-2020
PMid:33778044 PMCid:PMC7983192
2. Rochwerg B, Brochard L, Elliott MW, et al. Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure. Eur Respir J 2017; 50(2):1602426.
https://doi.org/10.1183/13993003.02426-2016
PMid:28860265
3. Squadrone E, Frigerio P, Fogliati C, et al. Noninvasive vs invasive ventilation in COPD patients with severe acute respiratory failure deemed to require ventilatory assistance. Intensive Care Med 2004; 30(7):1303-1310.
https://doi.org/10.1007/s00134-004-2320-7
PMid:15197438
4. Confalonieri M, Potena A, Carbone G, et al. Acute respiratory failure in patients with severe community-acquired pneumonia: a prospective randomized evaluation of noninvasive ventilation. Am J Respir Crit Care Med 1999; 160(5):1585-1591.
https://doi.org/10.1164/ajrccm.160.5.9903015
PMid:10556125
5. Ambrosino N, Vagheggini G. Noninvasive positive pressure ventilation in the acute care setting: where are we? Eur Respir J 2008; 31(4):874-886.
https://doi.org/10.1183/09031936.00143507
PMid:18378782
6. Vitacca M, Ambrosino N, Clini E, et al. Physiological response to pressure support ventilation de- livered before and after extubation in patients not capable of totally spontaneous autonomous breathing. Am J Respir Crit Care Med 2001; 164(4):638-641.
https://doi.org/10.1164/ajrccm.164.4.2010046
PMid:11520729
7. Vaschetto R, Longhini F, Navalesi P. Acute non-invasive ventilation. ERS Monogr 2016; 74:186-199.
https://doi.org/10.1183/2312508X.10002316
8. Vassilakopoulos T, Petrof BJ: Ventilator-induced diaphragmatic dysfunction. Am J Respir Crit Care Med 2004; 169(3):336-341.
https://doi.org/10.1164/rccm.200304-489CP
PMid:14739134
9. Kabitz HJ, Windisch W, Schönhofer B. Ventilator induzierter Zwerchfellschaden: ein Update [Understanding ventilator-induced diaphragmatic dysfunction (VIDD): progress and advances]. Pneumologie 2013; 67(8):435-441.
https://doi.org/10.1055/s-0033-1344241
PMid:23818292
10. Jung B, Moury PH, Mahul M, et al. Diaphragmatic dysfunction in patients with ICU-acquired weakness and its impact on extubation failure. Intensive Care Med 2016; 42(5):853-861.
https://doi.org/10.1007/s00134-015-4125-2
PMid:26572511
11. Dres M, Dubé BP, Mayaux J, et al. Coexistence and impact of limb muscle and diaphragm weakness at time of liberation from mechanical ventilation in medical intensive care unit patients. Am J Respir Crit Care Med 2017; 195(1):57-66.
https://doi.org/10.1164/rccm.201602-0367OC
PMid:27310484
12. Dubé BP, Dres M, Mayaux J, et al. Ultrasound evaluation of diaphragm function in mechanically ventilated patients: comparison to phrenic stimulation and prognostic implications. Thorax 2017; 72(9):811-818.
https://doi.org/10.1136/thoraxjnl-2016-209459
PMid:28360224
13. Kim WY, Suh HJ, Hong SB, et al. Diaphragm dysfunction assessed by ultrasonography: influence on weaning from mechanical ventilation. Crit Care Med 2011; 39(12):2627-2630.
https://doi.org/10.1097/CCM.0b013e3182266408
PMid:21705883
14. Pinsky MR, Matuschak GM, Klain M. Determinants of cardiac augmentation by elevations in intrathoracic pressure. J Appl Physiol 1985; 58(4):1189-1198.
https://doi.org/10.1152/jappl.1985.58.4.1189
PMid:3988674
15. Pinsky MR, Summer WR, Wise RA, Permutt S, Bromberger-Barnea B. Augmentation of cardiac function by elevation of intrathoracic pressure. J Appl Physiol 1983; 54(4):950-955.
https://doi.org/10.1152/jappl.1983.54.4.950
PMid:6853301
16. Fessler HE, Brower RG, Wise RA, et al. Effects of systolic and diastolic positive pleural pressure pulses with altered cardiac contractility. J Appl Physiol 1992; 73(2):498-505.
https://doi.org/10.1152/jappl.1992.73.2.498
PMid:1399972
17. Vieillard-Baron A, Augarde R, Prin S, et al. Influence of superior vena caval zone condition on cyclic changes in right ventricular outflow during respiratory support. Anesthesiology 2001; 95(5):1083-1088.
https://doi.org/10.1097/00000542-200111000-00010
PMid:11684975
18. Vieillard-Baron A, Chergui K, Rabiller A, et al. Superior vena cava collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Med 2004; 30(9):1734-1739.
https://doi.org/10.1007/s00134-004-2361-y
PMid:15375649
19. Vieillard‐Baron A, Millington SJ, Sanfilippo F, et al. A decade of progress in critical care echocardiography: a narrative review. Intensive Care Med 2019; 45(6):770-788.
https://doi.org/10.1007/s00134-019-05604-2
PMid:30911808
20. Mayo PH, Copetti R, Feller‐Kopman D, et al. Thoracic ultrasonography: a narrative review. Intensive Care Med 45(9):1200-1211.
https://doi.org/10.1007/s00134-019-05725-8
PMid:31418060
21. Goligher EC, Laghi F, Detsky ME, et al. Measuring diaphragm thickness with ultrasound in mechanically ventilated patients: Feasibility, reproducibility and validity. Intensive Care Med 2015; 41(4):642-649.
https://doi.org/10.1007/s00134-015-3687-3
PMid:25693448
22. Matamis D, Soilemezi E, Tsagourias M, et al. Sonographic evaluation of the diaphragm in critically ill patients. Technique and clinical applications. Intensive Care Med 2013; 39(5):801-810.
https://doi.org/10.1007/s00134-013-2823-1
PMid:23344830
23. Santana PV, Cardenas LZ, Albuquerque ALP. Diaphragmatic ultrasound: A review of its methodological aspects and clinical uses. J Bras Pneumol 2020; 46 (6):e20200064.
https://doi.org/10.36416/1806-3756/e20200064
PMid:33237154 PMCid:PMC7909996
24. Dinh VA, Ko HS, Rao R, et al. Measuring cardiac index with a focused cardiac ultrasound examination in the ED. Am J Emerg Med 2012; 30(9):1845-1851.
https://doi.org/10.1016/j.ajem.2012.03.025
PMid:22795411
25. Marik PE. Obituary: pulmonary artery catheter 1970 to 2013. Ann Intensive Care 2013; 3(1):38.
https://doi.org/10.1186/2110-5820-3-38
PMid:24286266 PMCid:PMC4175482
26. van Lelyveld-Haas LE, van Zanten AR, Borm GF, et al. Clinical validation of the non-invasive cardiac output monitor USCOM-1A in critically ill patients. Eur J Anaesthesiol 2008; 25(11):917-924.
https://doi.org/10.1017/S0265021508004882
PMid:18652712
27. Mehta Y, Arora D. Newer methods of cardiac output monitoring. World J Cardiol 2014; 6(9):1022-1029.
https://doi.org/10.4330/wjc.v6.i9.1022
PMid:25276302 PMCid:PMC4176793
28. Blanco P, Aguiar FM, Blaivas M. Rapid ultrasound in shock (RUSH) velocity-time integral: a proposal to expand the rush protocol. J Ultrasound Med 2015; 34(9):1691-1700.
https://doi.org/10.7863/ultra.15.14.08059
PMid:26283755
29. Blanco P. Rationale for using the velocity-time integral and the minute distance for assessing the stroke volume and cardiac output in point-of-care settings. Ultrasound J 2020; 12(1):21.
https://doi.org/10.1186/s13089-020-00170-x
PMid:32318842 PMCid:PMC7174466
30. Wang J, Zhou D, Gao Y, et al. Effect of VTI LVOT variation rate on the assessment of fluid responsiveness in septic shock patients. Medicine (Baltimore) 2020; 99(47):e22702.
https://doi.org/10.1097/MD.0000000000022702
PMid:33217793 PMCid:PMC7676570
31. Zhou G, Zhang H, Wang X, et al. Variation of left ventricular outflow tract velocity time integral at different positive end-expiratory pressure levels can predict fluid responsiveness in mechanically ventilated critically ill patients. J Cardiothorac Vasc Anesth 2022; 36(8 Pt B):3101-3108.
https://doi.org/10.1053/j.jvca.2022.04.033
PMid:35599102
32. Cammarota G, Sguazzotti I, Zanoni M, et al. Diaphragmatic ultrasound assessment in subjects with acute hypercapnic respiratory failure admitted to the emergency department. Respir Care 2019; 64(12):1469-1477.
https://doi.org/10.4187/respcare.06803
PMid:31455684