The evolution and future of respiratory care for Spinal Muscular Atrophy

Carrie K Barker, Jennifer Kwon

Cite

Barker CK, Kwon J. The evolution and future of respiratory care for Spinal Muscular Atrophy. J Mech Vent 2025; 6(1):23-30.

Abstract

Spinal Muscular Atrophy (SMA) is a hereditary neuromuscular disorder characterized by progressive weakness over time. The most common cause of death in patients with SMA is respiratory failure due to weakness of the respiratory muscles. In the past, patients with the most severe forms of SMA did not typically survive more than 2 years. However, technology developed for the short-term ventilation of patients with acute respiratory failure due to poliomyelitis, beginning in the 1920s, ultimately led to advancements in long-term ventilation in patients with SMA. In addition, advancements in artificial airways and airway clearance, also developed for short-term respiratory care for patients with polio, contributed to significant improvement in life expectancy for patients with SMA, and opened the door to advancements in other areas, such as orthopedic and nutritional care.

Now that disease modifying therapies are available, the spectrum of respiratory disease in patients with SMA continues to change. However, in moving forward, it is vital to understand the natural history of SMA and the history of the respiratory care it has required, not only to provide the best possible nuanced care for current patients with SMA, but also to learn from the advances made in SMA care and apply them to other respiratory disease processes, just as the care of patients with polio created so many advancements in the care of patients with SMA.

Keywords: SMA, Mechanical Ventilation, Polio epidemic

References

1. Kolb SJ, Kissel JT. Spinal Muscular Atrophy: A timely review. Arch Neurol 2011; 68(8):979-984.
https://doi.org/10.1001/archneurol.2011.74
PMid:21482919 PMCid:PMC3860273
2. Byers RK, Banker BQ. Infantile muscular atrophy. Arch Neurol 1961; 5:140-164.
https://doi.org/10.1001/archneur.1961.00450140022003
PMid:13689565
3. Darras BT, Finkel RS. Natural history of Spinal Muscular Atrophy. In Spinal Muscular Atrophy: Disease mechanisms and therapy. Ed. CJ Sumner, S Paushkin, CP Ko 2017:399-421.
https://doi.org/10.1016/B978-0-12-803685-3.00025-2
4. Drinker P, Shaw LA. An apparatus for the prolonged administration of artificial respiration: I. A design for adults and children. J Clin Invest 1929; 7: 229-247.
https://doi.org/10.1172/JCI100226
PMid:16693859 PMCid:PMC434785
5. Drinker PA, McKhann CF. The use of a new apparatus for the prolonged administration of artificial respiration. I. A fatal case of poliomyelitis. JAMA 1929; 92:1658-1660.
https://doi.org/10.1001/jama.1929.02700460014005
6. Eichel T, Dreux ML. Negative or positive? The iron lung and poliomyelitis-Zurich, 1951. Anaesth Intensive Care 2017; 45(7)13-20.
https://doi.org/10.1177/0310057X170450S103
PMid:28675796
7. Trubuhovich RV. On the very first, successful, long-term, large-scale use of IPPV. Albert Bower and V Ray Bennett: Los Angeles, 1948-1949. Crit Care Resusc 2007; 9(1):91-100.
https://doi.org/10.1016/S1441-2772(23)02012-4
PMid:17352673
8. West JB. The physiological challenges of the 1952 Copenhagen poliomyelitis epidemic and a renaissance in clinical respiratory physiology. J Appl Physiol 2005; 99(2):424-432.
https://doi.org/10.1152/japplphysiol.00184.2005
PMid:16020437 PMCid:PMC1351016
9. Lassen HCA. The Epidemic of Poliomyelitis in Copenhagen, 1952. Proceedings of the Royal Society of Medicine. Section of epidemiology and Preventive Medicine 1953; 47:67-71.
https://doi.org/10.1177/003591575404700119
10. Westhorpe RN, Ball C. The Bird Ventilator. Anaesth Intensive Care 2012; 40(4):585.
https://doi.org/10.1177/0310057X1204000401
PMid:22813483
11. Ambesh S. History of tracheostomy and evolution of percutaneous tracheostomy. In Principles and Practice of Percutaneous Tracheostomy 2010; 1-11.
https://doi.org/10.5005/jp/books/11377_1
12. Bach JR, O’Brien J, Krotenberg R, et al. Management of end stage respiratory failure in Duchenne muscular dystrophy. Muscle Nerve 1987; 10:177-182.
https://doi.org/10.1002/mus.880100212
PMid:3547120
13. Bach JR, Alba AS, Bodofsky E, et al. Glossopharyngeal breathing and non-invasive aids in the management of post-polio respiratory insufficiency. Birth Defects 1987; 23(4):99-113.
14. Bach JR, Alba AS. Tracheostomy ventilation: a study of efficacy with deflated cuffs and cuffless tubes. Chest 1990; 97(3): 679-683.
https://doi.org/10.1378/chest.97.3.679
PMid:2407453
15. Bach JR, Alba A, Saporito LR. Intermittent positive pressure ventilation via the mouth as an alternative to tracheostomy for 257 ventilator users. Chest 1993; 103(1):174-182.
https://doi.org/10.1378/chest.103.1.174
PMid:8417874
16. Bach JR. A Comparison of long-term ventilatory support alternatives from the perspective of the patient and care giver. Chest 1993; 104(6):1702-1706.
https://doi.org/10.1378/chest.104.6.1702
PMid:8252946
17. Bach JR, Niranjan V, Weaver B. Spinal muscular atrophy type 1: A noninvasive respiratory management approach. Chest 2000; 117(4):1100-1105.
https://doi.org/10.1378/chest.117.4.1100
PMid:10767247
18. Bach JR. Mechanical insufflation-exsufflation: comparison of peak expiratory flows with manually assisted and unassisted coughing techniques. Chest 1993; 104(5):1553-1562.
https://doi.org/10.1378/chest.104.5.1553
PMid:8222823
19. Chatburn RL. High-frequency assisted airway clearance. Respir Care 2007; 52(9):1224-1235.
20. Hardart MKM, Truog RD. Spinal muscular atrophy – type I. Arch Dis Child 2003; 88(10):848-850.
https://doi.org/10.1136/adc.88.10.848
PMid:14500298 PMCid:PMC1719334
21. Bush A, Fraser J, Jardine E, et al. Respiratory management of the infant with type 1 spinal muscular atrophy. Arch Dis Child 2005; 90(7):709-711.
https://doi.org/10.1136/adc.2004.065961
PMid:15970612 PMCid:PMC1720500
22. Wang CH, Finkel RS, Bertini ES, et al. Consensus statement for standard of care in Spinal Muscular Atrophy. Journal of Child Neurology 2007; 22(8):1027-1049.
https://doi.org/10.1177/0883073807305788
PMid:17761659
23. Hjartarson HT, Nathorst-Boos K, Sejersen T. Disease modifying therapies for the management of children with Spinal Muscular Atrophy (5q SMA): An update on the emerging evidence. Drug Des Devel Ther 2022; 16:1865-1883.
https://doi.org/10.2147/DDDT.S214174
PMid:35734367 PMCid:PMC9208376
24. Cure SMA Foundation. State of SMA: 2023 report. Available at https://www.curesma.org/wp-content/uploads/2024/06/9042024_State-of-SMA_vWeb.pdf. Accessed January 21, 2025.
25. DeRusso M, Miller AG, Caccamise M, et al. Negative-pressure ventilation in the pediatric ICU. Respir Care 2024; 69(3):354-65.
https://doi.org/10.4187/respcare.11193
PMid:38164590 PMCid:PMC10984599
26. Shneerson JM, Simonds AK. Noninvasive ventilation for chest wall and neuromuscular disorders. Eur Respir J 2002; 20(2):480-7.
https://doi.org/10.1183/09031936.02.00404002
PMid:12212984
27. Finder JD, Birnkrant D, Carl J, et al. Respiratory care of the patient with Duchenne muscular dystrophy: ATS consensus statement. Am J Respir Crit Care Med 2004; 170(4):456-465.
https://doi.org/10.1164/rccm.200307-885ST
PMid:15302625
28. Almeda M, Puranik S, Felker M, et al. Biphasic cuirass ventilation in a patient with congenital myotonic dystrophy. Am J Respir Crit Care Med 2020; 69(3):201:A1928.
https://doi.org/10.1164/ajrccm-conference.2020.201.1_MeetingAbstracts.A1928
29. Mellies U, Ragette R, Dohna Schwake C, et al. Long-term invasive ventilation in children and adolescents with neuromuscular disorders. Eur Respir J 2003; 22(4):631-636.
https://doi.org/10.1183/09031936.03.00044303a
PMid:14582916
30. Veldhoen ES, Wijngaarde CA, Verweij-van den Oudenrijn LP, et al. Relative hyperventilation in non-ventilated patients with spinal muscular atrophy. Eur Respir J 2020; 56(5):1-4.
https://doi.org/10.1183/13993003.00162-2020
PMid:32586880 PMCid:PMC7674775