Protocolo de Liberación del Ventilador Mecánico. Recomendación basada en una revisión de la evidencia
Aurio Fajardo-Campoverdi, Alejandro González-Castro, Rodrigo Adasme-Jeria, Angelo Roncalli-Rocha, Miguel Ibarra, Carmen Chica-Meza, William Cristancho-Gómez, Enrique Monares-Zepeda, Alberto Medina Villanueva, Vicent Modesto I Alapont, Fernando Paziencia, Juan Pérez, Yolanda Lopez-Fernandez. From the international group of mechanical ventilation (WeVent).
Cite
Fajardo-Campoverdi A, González-Castro A, Adasme-Jeria R, Roncalli-Rocha A, Ibarra M, Chica-Meza C, Cristancho-Gómez W, Monares-Zepeda E, Medina-Villanueva A, Modesto I Alapont V, Paziencia F, Pérez J, López-Fernandez Y. Mechanical Ventilator Release Protocol. Recommendation based on a review of the evidence. J Mech Vent 2023; 4(1):31-42.
Abstract (English)
Mechanical ventilation is currently the most widely used supportive therapy for the treatment of moderate and severe hypoxemia of any etiology. However, the decision of “when” is the right time to initiate the withdrawal of this support is currently a matter of debate worldwide. Many authors describe that the disconnection process should be gradual and in compliance with standards that provide safety to this process; while other authors report that it is not feasible to establish a universal standard since each patient would have a unique behavior that would be difficult to establish in a protocolized manner.
The present review represents an extensive search for evidence in an attempt to clarify this issue, generating evidence from a consensus of experts at international level, based on a broad review of the literature.
Keywords
Weaning, Spontaneous breathing trial, Rapid shallow breathing index, P0.1
————————————————————–
Resumen (Spanish)
La ventilación mecánica es actualmente la terapia de soporte más ampliamente usada para el tratamiento de la hipoxemia moderada y severa de cualquier etiología. Sin embargo, la decisión de “cuándo” es el momento adecuado para iniciar el retiro de este soporte, es actualmente motivo de discusión a nivel mundial. Muchos autores describen que el proceso de desconexión debe ser paulatino y mediante el cumplimiento de normas que le otorguen seguridad a dicho proceso; mientras que otros autores reportan que no es factible establecer una normativa universal ya que cada paciente tendría un comportamiento único y difícil de establecer en forma protocolizada.
La presente revisión representa una extensa búsqueda de la evidencia, para intentar esclarecer este tema, generando evidencia a partir de un consenso de expertos a nivel internacional, basados en una amplia revisión de la literatura.
Palabras clave
liberación del ventilador mecánico, weaning, destete, ventilación mecánica
References
1. McConville JF, Kress JP. Weaning Patients from the Ventilator. N Engl J Med 2012; 367(23):2233-2239. https://doi.org/10.1056/NEJMra1203367 PMid:23215559 |
2. Macintyre NR. Evidence-based assessments in the ventilator discontinuation process. Respir Care 2012; 57(10):1611-1618. https://doi.org/10.4187/respcare.02055 PMid:23013898 |
3. Slutsky AS. Mechanical ventilation. American College of Chest Physicians’ Consensus Conference. Chest 1993;104(6):1833-1859. https://doi.org/10.1378/chest.104.6.1833 PMid:8252973 |
4. Gajic O. Tobin MJ: Principles and Practice of Mechanical Ventilation, 2nd Ed. Crit Care 2007; 11(1):315. https://doi.org/10.1186/cc6137 |
5. Tobin MJ. Role and interpretation of weaning predictors. In: As presented at the 5th International Consensus Conference in Intensive Care Medicine: Weaning from Mechanical Ventilation, Budapest: Hosted by ERS, ATS, ESICM, SCCM and SRLF; 2005. Available from: www.ersnet.org/ers/lr/ browse/default.aspx?id52814. Accessed January 2023 |
6. Esteban A, Anzueto A, Frutos F, et al. Characteristics and outcomes in adult patients receiving mechanical ventilation: a 28-day international study. JAMA 2002; 287(3):345-355. https://doi.org/10.1001/jama.287.3.345 PMid:11790214 |
7. Cooper LM, Linde-Zwirble WT. Medicare intensive care unit use: analysis of incidence, cost, and payment. Crit Care Med 2004; 32(11):2247-253. https://doi.org/10.1097/01.CCM.0000146301.47334.BD PMid:15640637 |
8. Gowardman JR, Huntington D, Whiting J. The effect of extubation failure on outcome in a multidisciplinary Australian intensive care unit. Crit care Resusc Crit Care Resusc 2006 ;8(4):328-333. |
9. Boles J-M, Bion J, Connors A, et al. Weaning from mechanical ventilation. Eur Respir J 2007; 29(5):1033-1056. https://doi.org/10.1183/09031936.00010206 PMid:17470624 |
10. Bellani G, Foti G, Spagnolli E, et al. Increase of oxygen consumption during a progressive decrease of ventilatory support is lower in patients failing the trial in comparison with those who succeed. Anesthesiology 2010; 113(2):378-385. https://doi.org/10.1097/ALN.0b013e3181e81050 PMid:20613464 |
11. Brochard L, Rauss A, Benito S, et al. Comparison of three methods of gradual withdrawal from ventilatory support during weaning from mechanical ventilation. Am J Respir Crit Care Med 1994; 150(4):896-903. https://doi.org/10.1164/ajrccm.150.4.7921460 PMid:7921460 |
12. Cavalcanti AB, Suzumura ÉA, Laranjeira LN, et al. Effect of lung recruitment and titrated positive end-expiratory pressure (PEEP) vs low peep on mortality in patients with acute respiratory distress syndrome: A Randomized Clinical Trial. JAMA 2017; 318(14):1335-1345. https://doi.org/10.1001/jama.2017.14171 PMCID: PMC5710484 |
13. Perren A, Brochard L. Managing the apparent and hidden difficulties of weaning from mechanical ventilation. Intensive Care Med 2013; 39(11):1885-1195. https://doi.org/10.1007/s00134-013-3014-9 PMid:23863974 |
14. Kacmarek RM, Branson RD. Should Intermittent Mandatory Ventilation be abolished? Respir Care 2016; 1;61(6):854- 866. https://doi.org/10.4187/respcare.04887 PMid:27235318 |
15. Tonnelier A, Tonnelier J-M, Nowak E, et al. Clinical relevance of classification according to weaning difficulty. Respir Care 2011; 56(5):583-590. https://doi.org/10.4187/respcare.00842 PMid:21276313 |
16. Thille AW, Gacouin A, Coudroy R, et al. Spontaneous-breathing trials with pressure-support ventilation or a T-Piece. N Engl J Med 2022; 387(20):1843-1854. https://doi.org/10.1056/NEJMoa2209041 PMid:36286317 |
17. Esteban A, Frutos F, Tobin MJ, et al. A comparison of four methods of weaning patients from mechanical ventilation. Spanish Lung Failure Collaborative Group. N Engl J Med 1995; 332(6):345-350. https://doi.org/10.1056/NEJM199502093320601 PMid:7823995 |
18. Fletcher SN, Kennedy DD, Ghosh IR, et al. Persistent neuromuscular and neurophysiologic abnormalities in long-term survivors of prolonged critical illness. Crit Care Med 2003; 31(4):1012-1016. https://doi.org/10.1097/01.CCM.0000053651.38421.D9 PMid:12682465 |
19. Feeley TW, Saumarez R, Klick JM, et al. Positive end-expiratory pressure in weaning patients from controlled ventilation. A prospective randomised trial. Lancet 1975; 2(7938):725-729. https://doi.org/10.1016/S0140-6736(75)90719-9 PMid:52767 |
20. Bailey CR, Jones RM, Kelleher AA. The role of continuous positive airway pressure during weaning from mechanical ventilation in cardiac surgical patients. Anaesthesia 1995; 50(8):677-681. https://doi.org/10.1111/j.1365-2044.1995.tb06092.x PMid:7645695 |
21. Squadrone V, Coha M, Cerutti E, et al. Continuous positive airway pressure for treatment of postoperative hypoxemiaa randomized controlled trial. JAMA 2005; 293(5):589-595. https://doi.org/10.1001/jama.293.5.589 PMid:15687314 |
22. Burns KEA, Soliman I, Adhikari NKJ, et al. Trials directly comparing alternative spontaneous breathing trial techniques: a systematic review and meta-analysis. Crit Care 2017; 21(1):127. https://doi.org/10.1186/s13054-017-1698-x PMid:28576127 PMCid:PMC5455092 |
23. Perren A, Domenighetti G, Mauri S, et al. Protocol-directed weaning from mechanical ventilation: clinical outcome in patients randomized for a 30-min or 120-min trial with pressure support ventilation. Intensive Care Med 2002; 28(8):1058-1063. https://doi.org/10.1007/s00134-002-1353-z PMid:12185425 |
24. Laghi F, Cattapan SE, Jubran A, et al. Is weaning failure caused by low-frequency fatigue of the diaphragm? Am J Respir Crit Care Med 2003; 167(2):120-127. https://doi.org/10.1164/rccm.200210-1246OC PMid:12411288 |
failure caused by low-frequency fatigue of the diaphragm? Am J Respir Crit Care Med 2003; 167(2):120-127. https://doi.org/10.1164/rccm.200210-1246OC PMid:12411288 |
25. Fernandez MM, González-Castro A, Magret M, et al. Reconnection to mechanical ventilation for 1 h after a successful spontaneous breathing trial reduces reintubation in critically ill patients: a multicenter randomized controlled trial. Intensive Care Med 2017; 43(11):1660-1667. https://doi.org/10.1007/s00134-017-4911-0 PMid:28936675 |
26. Dadam MM, Gonçalves ARR, Mortari GL, et al. The effect of reconnection to mechanical ventilation for 1 hour after spontaneous breathing trial on reintubation among patients ventilated for more than 12 hours: A randomized clinical trial. Chest 2021; 160(1):148-156. https://doi.org/10.1016/j.chest.2021.02.064 PMid:33676997 |
27. Teixeira SN, Osaku EF, Lima de Macedo Costa CR, et al. Comparison of proportional assist ventilation plus, T-Tube ventilation, and pressure support ventilation as spontaneous breathing trials for extubation: A randomized study. Respir Care 2015; 60(11):1527-1535 https://doi.org/10.4187/respcare.03915 PMid:26152472 |
28. De Jong A, Talmor D, Jaber S. How to optimize extubation? Intensive Care Med 2023; Epub ahead of print. https://doi.org/10.1007/s00134-022-06964-y PMid:36719457 |
29. Khamiees M, Raju P, DeGirolamo A, et al. Predictors of extubation outcome in patients who have successfully completed a spontaneous breathing trial. Chest 2001;120(4):1262-1270. https://doi.org/10.1378/chest.120.4.1262 PMid:11591570 |
30. Truwit JD, Marini JJ. Validation of a technique to assess maximal inspiratory pressure in poorly cooperative patients. Chest 1992 ;102(4):1216-1219. https://doi.org/10.1378/chest.102.4.1216 PMid:1395771 |
31. Salam A, Tilluckdharry L, Amoateng-Adjepong Y, et al. Neurologic status, cough, secretions and extubation outcomes. Intensive Care Med. 2004; 30(7):1334-1339. https://doi.org/10.1007/s00134-004-2231-7 PMid:14999444 |
32. Vassilakopoulos T, Zakynthinos S, Roussos C. The tension-time index and the frequency/tidal volume ratio are the major pathophysiologic determinants of weaning failure and success. Am J Respir Crit Care Med. 1998;158(2):378-385. https://doi.org/10.1164/ajrccm.158.2.9710084 PMid:9700110 |
33. Magalhães PAF, Camillo CA, Langer D, et al. Weaning failure and respiratory muscle function: What has been done and what can be improved? Respir Med 2018; 134:54-61. https://doi.org/10.1016/j.rmed.2017.11.023 PMid:29413508 |
34. Anguel N, Monnet X, Osman D, et al. Increase in plasma protein concentration for diagnosing weaning-induced pulmonary edema. Intensive Care Med 2008; 34(7):1231-1238. https://doi.org/10.1007/s00134-008-1038-3 PMid:18297263 |
35. Routsi C, Stanopoulos I, Kokkoris S, et al. Weaning failure of cardiovascular origin: how to suspect, detect and treat-a review of the literature. Ann Intensive Care 2019; 9(1):6. https://doi.org/10.1186/s13613-019-0481-3 PMid:30627804 PMCid:PMC6326918 |
36. Dres M, Teboul J-L, Anguel N, et al. Extravascular lung water, B-type natriuretic peptide, and blood volume contraction enable diagnosis of weaning-induced pulmonary edema. Crit Care Med 2014; 42(8):1882-1889. https://doi.org/10.1097/CCM.0000000000000295 PMid:24717458 |
37. Caille V, Amiel JB, Charron C, et al. Echocardiography: a help in the weaning process. Crit Care 2010; 14(3):R120. https://doi.org/10.1186/cc9076 PMid:20569504 PMCid:PMC2911768 |
38. Sayas Catalán J, Hernández-Voth A, Villena Garrido MV. Diaphragmatic ultrasound: An innovative tool has become routine. Arch Bronconeumol 2020; 56(4):201-203. https://doi.org/10.1016/j.arbres.2019.06.020 PMid:31383496 |
39. Teboul J-L, Monnet X, Richard C. Weaning failure of cardiac origin: recent advances. Crit Care 2010; 14(2):211. https://doi.org/10.1186/cc8852 PMid:20236455 PMCid:PMC2887104 |
40. Takhar A, Walker A, Tricklebank S, et al. Recommendation of a practical guideline for safe tracheostomy during the COVID-19 pandemic. Eur Arch oto-rhino-laryngology. Head Neck Surg 2020; 277(8):2173-2184. https://doi.org/10.1007/s00405-020-05993-x PMid:32314050 PMCid:PMC7170707 |
41. Ely EW, Shintani A, Truman B, et al. Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. JAMA. 2004; 291(14):1753-1762. https://doi.org/10.1001/jama.291.14.1753 PMid:15082703 |
42. Anoop K. A study on predictors of extubation failure in tertiary hospital. Rajiv Thandi University of Health Sciences, Bangalore; 2019. Available from: http://dspace.sdmmedicalcollege.org/xmlui/handle/123456789/1188. Accessed December 2022 |
43. Vivier E, Muller M, Putegnat J-B, et al. Inability of diaphragm ultrasound to predict extubation failure: A multicenter study. Chest 2019; 155(6):1131-1139. https://doi.org/10.1016/j.chest.2019.03.004 PMid:30910636 |
44. Kulkarni AP, Agarwal V. Extubation failure in intensive care unit: predictors and management. Indian J Crit care Med 2008; 12(1):1-9. https://doi.org/10.4103/0972-5229.40942 PMid:19826583 PMCid:PMC2760915 |
45. Cristancho W. Fundamentos de Fisioterapia Respiratoria y Ventilación Mecánica. 3ra ed. El Manual Moderno, editor. Bogotá; 2015. |
46. Markovitz B, Randolph A, Khemani RG. Corticosteroids for the prevention and treatment of post‐extubation stridor in neonates, children and adults. Cochrane Database Syst Rev 2008;(2). https://doi.org/10.1002/14651858.CD001000.pub2 |
47. Jesús R De, Aguilar C, Teresa M, et al. Estridor postextubación y prueba de volumen de fuga en la unidad de cuidados intensivos. 2011; 25(4):206-210. |
48. Engoren M. Evaluation of the cuff-leak test in a cardiac surgery population. Chest 1999; 116(4):1029-1031. https://doi.org/10.1378/chest.116.4.1029 PMid:10531170 |
49. Sandhu RS, Pasquale MD, Miller K, et al. Measurement of endotracheal tube cuff leak to predict postextubation stridor and need for reintubation. J Am Coll Surg. 2000; 190(6):682-687. https://doi.org/10.1016/S1072-7515(00)00269-6 PMid:10873003 |
50. Schnell D, Planquette B, Berger A, et al. Cuff leak test for the diagnosis of post-extubation stridor: A multicenter evaluation study. J Intensive Care Med 2019; 34(5):391-396. https://doi.org/10.1177/0885066617700095 PMid:28343416 |
51. Hernández Ruiz HF, Poblano Morales M, Monares Zepeda E, et al. Esteroides en extubación. Med Crítica. 2019; 33(6):315-320. https://doi.org/10.35366/91602 PMid:16498264 |
52. Girard TD, Alhazzani W, Kress JP, et al. An Official American Thoracic Society/American College of Chest Physicians Clinical Practice Guideline: Liberation from mechanical ventilation in critically ill adults. Rehabilitation protocols, ventilator liberation protocols, and cuff leak tests. Am J Respir Crit Care Med 2017; 195(1):120-133. https://doi.org/10.1164/rccm.201610-2075ST PMid:27762595 |
53. Díaz MC, Ospina-Tascón GA, Salazar C BC. Disfunción muscular respiratoria: una entidad multicausal en el paciente críticamente enfermo sometido a ventilación mecánica. Arch Bronconeumol 2014; 50(2):73-77. https://doi.org/10.1016/j.arbres.2013.03.005 PMid:23669061 |
54. Thille AW, Boissier F, Ben Ghezala H, et al. Risk factors for and prediction by caregivers of extubation failure in ICU patients: a prospective study. Crit Care Med 2015; 43(3):613-620. https://doi.org/10.1097/CCM.0000000000000748 PMid:25479115 |
55. Hernández G, Paredes I, Moran F, et al. Effect of postextubation noninvasive ventilation with active humidification vs high-flow nasal cannula on reintubation in patients at very high risk for extubation failure: a randomized trial. Intensive Care Med 2022; 48(12):1751-1759. https://doi.org/10.1007/s00134-022-06919-3 PMid:36400984 PMCid:PMC9676812 |
56. Sang L, Nong L, Zheng Y, et al. Effect of high-flow nasal cannula versus conventional oxygen therapy and non-invasive ventilation for preventing reintubation: a Bayesian network meta-analysis and systematic review. J Thorac Dis 2020;12(7):3725-3736. https://doi.org/10.21037/jtd-20-1050 PMid:32802452 PMCid:PMC7399398 |
57. Burns K, Adhikari N. Noninvasive ventilation and weaning outcome. Noninvasive mechanical ventilation and difficult weaning in critical care: Key Topics and Practical Approaches. 2016; 451-461. https://doi.org/10.1007/978-3-319-04259-6_55 PMCid:PMC5331863 |
58. Bajaj A, Rathor P, Sehgal V, et al. Efficacy of noninvasive ventilation after planned extubation: A systematic review and meta-analysis of randomized controlled trials. Heart Lung 2015; 44(2):150-157. https://doi.org/10.1016/j.hrtlng.2014.12.002 PMid:25592206 |
59. Ornico SR, Lobo SM, Sanches HS, et al. Noninvasive ventilation immediately after extubation improves weaning outcome after acute respiratory failure: a randomized controlled trial. Crit Care 2013; 17(2):R39. https://doi.org/10.1186/cc12549 PMid:23497557 PMCid:PMC3672522 |
60. Lin C, Yu H, Fan H, et al. The efficacy of noninvasive ventilation in managing postextubation respiratory failure: a meta-analysis. Heart Lung 2014; 43(2):99-104. https://doi.org/10.1016/j.hrtlng.2014.01.002 PMid:24594246 |
61. Villarejo F, Rios FG, La Moglie RRet al. VNI en el proceso de discontinuación de la ventilación mecánica. Medicine Intensiva 2007; 24(1): 20-28. |
62. Esteban A, Frutos-Vivar F, Ferguson ND, et al. Noninvasive positive-pressure ventilation for respiratory failure after extubation. N Engl J Med 2004; 350(24):2452-2460. https://doi.org/10.1056/NEJMoa032736 PMid:15190137 |
63. Antonelli M, Conti G, Bufi M, et al. Noninvasive ventilation for treatment of acute respiratory failure in patients undergoing solid organ transplantation: a randomized trial. JAMA 2000; 283(2):235-241. https://doi.org/10.1001/jama.283.2.235 PMid:10634340 |
64. Keenan SP, Powers C, McCormack DG, et al. Noninvasive positive-pressure ventilation for postextubation respiratory distress: a randomized controlled trial. JAMA 2002; 287(24):3238-3244. https://doi.org/10.1001/jama.287.24.3238 PMid:12076220 |
65. Huang H-W, Sun X-M, Shi Z-H, et al. Effect of high-flow nasal cannula oxygen therapy versus conventional oxygen therapy and noninvasive ventilation on reintubation rate in adult patients after extubation: A systematic review and meta-analysis of randomized controlled trials. J Intensive Care Med 2017; 33(11):609-623. https://doi.org/10.1177/0885066617705118 PMid:28429603 |
66. Matsuda W, Hagiwara A, Uemura T, et al. High-flow nasal cannula may not reduce the re-intubation rate compared with a large-volume nebulization-based humidifier. Respir Care 2020; 65(5):610-617. https://doi.org/10.4187/respcare.07095 PMid:31992669 |
67. González-Castro A, Fajardo A, Medina A, et al. Non-invasive mechanical ventilation and high-flow oxygen therapy in the COVID-19 pandemic: the value of a draw. Med Intensiva 2021; 45(5):320-322. https://doi.org/10.1016/j.medin.2020.04.017 PMCid:PMC7198163 |
68. Vaschetto R, Turucz E, Dellapiazza F, et al. Noninvasive ventilation after early extubation in patients recovering from hypoxemic acute respiratory failure: a single-centre feasibility study. Intensive Care Med 2012; 38(10):1599-1606. https://doi.org/10.1007/s00134-012-2652-7 PMid:22825283 |
69. Yan Y, Xie Y, Chen X, et al. Mechanical power is associated with weaning outcome in critically ill mechanically ventilated patients. Sci Rep 2022; 12(1):19634. |