Andreas Schibler, Matthias van der Staay, Christian Remus
Cite
Schibler A, van der Staay M, Remus C. From state-of-the-art ventilation to closed loop ventilation J Mech Vent 2022; 3(3):92-104
Abstract
Recent emphasis on energy load delivered during each ventilatory breath has opened a new insight to reduce harmful ventilatory induced lung injury, but no robust clinical evidence of patient benefit produced yet.
Closed loop ventilation is a strategy to adjust respiratory support using physiological feedback data obtained for each delivered cycle of respiratory support. Dependent on the model assumption used, closed loop ventilation aims to identify the ideal combination of tidal volume size, reduced driving pressure or respiratory frequency ultimately reducing the energy loading of the lung.
This review aims to discuss the current state-of-the-art ventilation concepts and their integration in closed loop ventilation.
Keywords
Ventilator Induced Lung Injury, Closed loop ventilation, Energy, ASV, AVM-2
References
1. Howell MD, Davis AM. Management of ARDS in adults. JAMA 2018; 319:711-712. https://doi.org/10.1001/jama.2018.0307 PMid:29466577 |
2. Amato MB, Meade MO, Slutsky AS, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 2015; 372:747-755. https://doi.org/10.1056/NEJMsa1410639 PMid:25693014 |
3. Aoyama H, Pettenuzzo T, Aoyama K, et al. Association of driving pressure with mortality among ventilated patients with Acute Respiratory Distress Syndrome: A systematic review and meta-analysis. Crit Care Med 2018; 46:300-306. https://doi.org/10.1097/CCM.0000000000002838 PMid:29135500 |
4. Guerin C, Papazian L, Reignier J, et al. Effect of driving pressure on mortality in ARDS patients during lung protective mechanical ventilation in two randomized controlled trials. Crit Care 2016; 20:384. https://doi.org/10.1186/s13054-016-1556-2 PMid:27894328 PMCid:PMC5126997 |
5. Serpa Neto A, Deliberato RO, Johnson AEW, et al. Mechanical power of ventilation is associated with mortality in critically ill patients: an analysis of patients in two observational cohorts. Intensive Care Med 2018; 44:1914-1922. https://doi.org/10.1007/s00134-018-5375-6 PMid:30291378 |
6. Coppola S, Caccioppola A, Froio S, et al. Effect of mechanical power on intensive care mortality in ARDS patients. Crit Care 2020; 24:246. https://doi.org/10.1186/s13054-020-02963-x PMid:32448389 PMCid:PMC7245621 |
7. Arnal JM, Wysocki M, Nafati C, et al. Automatic selection of breathing pattern using adaptive support ventilation. Intensive Care Med 2008; 34:75-81. https://doi.org/10.1007/s00134-007-0847-0 PMid:17846747 |
8. Paiva M, Verbanck S, van Muylem A. Diffusion-dependent contribution to the slope of the alveolar plateau. Respiration Physiology 1988; 72:257-270. https://doi.org/10.1016/0034-5687(88)90085-0 |
9. Verbanck S, Paiva M. Model simulations of gas mixing and ventilation distribution in the human lung. Journal of Applied Physiology 1990; 69:2269-2679. https://doi.org/10.1152/jappl.1990.69.6.2269 PMid:2077025 |
10. Schibler A, Yuill M, Parsley C,et al. Regional ventilation distribution in non‐sedated spontaneously breathing newborns and adults is not different. Pediatr Pulmonol 2009; 44:851-858. https://doi.org/10.1002/ppul.21000 PMid:19672959 |
11. Schnidrig S, Casaulta C, Schibler A, et al. Influence of end-expiratory level and tidal volume on gravitational ventilation distribution during tidal breathing in healthy adults. European journal of applied physiology 2013; 113:591-598. https://doi.org/10.1007/s00421-012-2469-7 PMid:22872368 |
12. von Ungern-Sternberg BS, Regli A, Schibler A, et al. The impact of positive end-expiratory pressure on functional residual capacity and ventilation homogeneity impairment in anesthetized children exposed to high levels of inspired oxygen. Anesth Analg 2007; 104:1364-1368. https://doi.org/10.1213/01.ane.0000261503.29619.9c PMid:17513627 |
13. Schibler A, Henning R. Positive end-expiratory pressure and ventilation inhomogeneity in mechanically ventilated children. Pediatr Crit Care Med 2002; 3(2):124-128. https://doi.org/10.1097/00130478-200204000-00006 PMid:12780980 |
14. Almeida-Junior AA, da Silva MTN, Almeida CCB, et al. Relationship between physiologic deadspace/tidal volume ratio and gas exchange in infants with acute bronchiolitis on invasive mechanical ventilation. Pediatr Crit Care Med 2007; 8:372-377. https://doi.org/10.1097/01.PCC.0000269389.51189.A8 PMid:17545938 |
15. Gattinoni L, Vagginelli F, Carlesso E, et al. Decrease in PaCO2 with prone position is predictive of improved outcome in acute respiratory distress syndrome. Crit Care Med 2003; 31:2727-2733. https://doi.org/10.1097/01.CCM.0000098032.34052.F9 PMid:14668608 |
16. Cressoni M, Caironi P, Polli F, et al. Anatomical and functional intrapulmonary shunt in acute respiratory distress syndrome. Crit Care Med 2008; 36:669-675. https://doi.org/10.1097/01.CCM.0000300276.12074.E1 PMid:18091555 |
17. Gattinoni L, Pesenti A. The concept of “baby lung”. Intensive Care Med 2005; 31:776-784. https://doi.org/10.1007/s00134-005-2627-z PMid:15812622 |
18. Amato MB, Barbas CS, Medeiros DM, et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 1998; 338:347-354. https://doi.org/10.1056/NEJM199802053380602 PMid:9449727 |
19. Villar J, Kacmarek RM, Perez-Mendez L, et al. A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: A randomized, controlled trial. Crit Care Med 2006; 34:1311-1318. https://doi.org/10.1097/01.CCM.0000215598.84885.01 PMid:16557151 |
20. Brochard L, Roudot-Thoraval F, Roupie E, et al. Tidal volume reduction for prevention of ventilator-induced lung injury in acute respiratory distress syndrome. The multicentre trial group on tidal volume reduction in ARDS. Am J Respir Crit Care Med 1998; 158:1831-1838. https://doi.org/10.1164/ajrccm.158.6.9801044 PMid:9847275 |
21. Brower R, Thompson BT. Tidal volumes in acute respiratory distress syndrome-one size does not fit all. Crit Care Med 2006; 34:263-264; author reply 4-7. https://doi.org/10.1097/01.CCM.0000191132.12653.05 PMid:16374199 |
22. Brower RG, Shanholtz CB, Fessler HE, et al. Prospective, randomized, controlled clinical trial comparing traditional versus reduced tidal volume ventilation in acute respiratory distress syndrome patients. Crit Care Med 1999; 27:1492-1498. https://doi.org/10.1097/00003246-199908000-00015 PMid:10470755 |
23. Acute Respiratory Distress Syndrome N, Brower RG, Matthay MA, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000; 342:1301-1308. https://doi.org/10.1056/NEJM200005043421801 PMid:10793162 |
24. Fan E, Del Sorbo L, Goligher EC, et al. An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine. Clinical practice guideline: mechanical ventilation in adult patients with Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2017; 195:1253-1263. https://doi.org/10.1164/rccm.201703-0548ST PMid:28459336 |
25. Protti A, Maraffi T, Milesi M, et al. Role of strain rate in the pathogenesis of ventilator-induced lung edema. Crit Care Med 2016; 44:e838-845. https://doi.org/10.1097/CCM.0000000000001718 PMid:27054894 |
26. Protti A, Andreis DT, Monti M, et al. Lung stress and strain during mechanical ventilation: any difference between statics and dynamics? Crit Care Med 2013; 41:1046-1055. https://doi.org/10.1097/CCM.0b013e31827417a6 PMid:23385096 |
27. Protti A, Cressoni M, Santini A, et al. Lung stress and strain during mechanical ventilation: any safe threshold? Am J Respir Crit Care Med 2011; 183:1354-1362. https://doi.org/10.1164/rccm.201010-1757OC PMid:21297069 |
28. Cressoni M, Gotti M, Chiurazzi C, et al. Mechanical power and development of ventilator-induced lung injury. Anesthesiology 2016; 124:1100-1108. https://doi.org/10.1097/ALN.0000000000001056 PMid:26872367 |
29. Aoyama H, Yamada Y, Fan E. The future of driving pressure: a primary goal for mechanical ventilation? J intensive care 2018; 6:64. https://doi.org/10.1186/s40560-018-0334-4 PMid:30305906 PMCid:PMC6172758 |
30. Tonna JE, Peltan I, Brown SM, et al; University of Utah Mechanical Power Study Group. Mechanical power and driving pressure as predictors of mortality among patients with ARDS. Intensive Care Med 2020;46: 1941-1943. https://doi.org/10.1007/s00134-020-06130-2 PMid:32504104 PMCid:PMC7273377 |
31. Boscolo A, Sella N, Lorenzoni G, et al. Static compliance and driving pressure are associated with ICU mortality in intubated COVID-19 ARDS. Crit Care 2021; 25:263. https://doi.org/10.1186/s13054-021-03667-6 PMid:34321047 PMCid:PMC8317138 |
32. van Schelven P, Koopman AA, Burgerhof JGM, et al. Driving pressure is associated with outcome in pediatric acute respiratory failure. Pediatr Crit Care Med 2022; 23:e136-e44. https://doi.org/10.1097/PCC.0000000000002848 PMid:34669679 |
33. Williams EC, Motta-Ribeiro GC, Vidal Melo MF. Driving pressure and transpulmonary pressure: how do we guide safe mechanical ventilation? Anesthesiology 2019; 131:155-163. https://doi.org/10.1097/ALN.0000000000002731 PMid:31094753 PMCid:PMC6639048 |
34. Kneyber MCJ. Randomized controlled trial of negative pressure ventilation: we first need characterized physiology. Pediatr Crit Care Med 2021; 22(6):e371-e372 https://doi.org/10.1097/PCC.0000000000002742 PMid:33899803 |
35. Kneyber MCJ. Driving pressure and mechanical power: The return of physiology in pediatric mechanical ventilation. Pediatr Crit Care Med 2021; 22:927-929. https://doi.org/10.1097/PCC.0000000000002829 PMid:34605787 |
36. Marini JJ, Gattinoni L, Rocco PR. Estimating the damaging power of high-stress ventilation. Respir Care 2020; 65:1046-1052. https://doi.org/10.4187/respcare.07860 PMid:32606007 |
37. Marini JJ, Rocco PRM. Which component of mechanical power is most important in causing VILI? Crit Care 2020; 24:39. https://doi.org/10.1186/s13054-020-2747-4 PMid:32024538 PMCid:PMC7003372 |
38. Marini JJ, Rocco PRM, Gattinoni L. Static and dynamic contributors to ventilator-induced lung injury in clinical practice. Pressure, energy, and power. Am J Respir Crit Care Med 2020; 201:767-774. https://doi.org/10.1164/rccm.201908-1545CI PMid:31665612 PMCid:PMC7124710 |
39. Costa ELV, Slutsky AS, Brochard LJ, et al. Ventilatory variables and mechanical power in patients with Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2021; 204:303-311. https://doi.org/10.1164/rccm.202009-3467OC PMid:33784486 |
40. Marini JJ. How I optimize power to avoid VILI. Crit Care 2019; 23:326. https://doi.org/10.1186/s13054-019-2638-8 PMid:31639025 PMCid:PMC6805433 |
41. Fan E, Brodie D, Slutsky AS. Acute Respiratory Distress Syndrome: Advances in diagnosis and treatment. JAMA 2018; 319:698-710. https://doi.org/10.1001/jama.2017.21907 PMid:29466596 |
42. Gattinoni L, Tonetti T, Cressoni M, et al. Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med 2016;42: 1567-75. https://doi.org/10.1007/s00134-016-4505-2 PMid:27620287 |
43. Marini JJ, Crooke PS, Gattinoni L. Intra-cycle power: is the flow profile a neglected component of ung protection? Intensive Care Med 2021;47: 609-611. https://doi.org/10.1007/s00134-021-06375-5 PMid:33797574 PMCid:PMC8017116 |
44. Duan EH, Adhikari NKJ, D’Aragon F, et al. Management of acute respiratory distress syndrome and refractory hypoxemia. A multicenter observational study. Ann Am Thorac Soc 2017; 14:1818-1826. https://doi.org/10.1513/AnnalsATS.201612-1042OC PMid:28910146 |
45. Hewlett AM, Platt AS, Terry VG. Mandatory minute volume. A new concept in weaning from mechanical ventilation. Anaesthesia 1977; 32:163-169. https://doi.org/10.1111/j.1365-2044.1977.tb11588.x PMid:322535 |
46. Brunner JX, Iotti GA. Adaptive Support Ventilation (ASV). Minerva Anestesiol 2002; 68:365-368. PMID: 12029247 |
47. Campbell RS, Branson RD, Johannigman JA. Adaptive support ventilation. Respir Care Clin N Am 2001; 7:425-440. https://doi.org/10.1016/S1078-5337(05)70049-6 |
48. Otis AB. The work of breathing. Physiol Rev 1954; 34:449-458. https://doi.org/10.1152/physrev.1954.34.3.449 PMid:13185751 |
49. Wysocki M, Jouvet P, Jaber S. Closed loop mechanical ventilation. J Clin Monit Comput 2014; 28:49-56. https://doi.org/10.1007/s10877-013-9465-2 PMid:23564277 |
50. Becher T, van der Staay M, Schadler D, et al. Calculation of mechanical power for pressure-controlled ventilation. Intensive Care Med 2019; 45:1321-1323. https://doi.org/10.1007/s00134-019-05636-8 PMid:31101961 |
51. van der Staay M, Chatburn RL. Advanced modes of mechanical ventilation and optimal targeting schemes. Intensive Care Med Exp 2018; 6:30. https://doi.org/10.1186/s40635-018-0195-0 PMid:30136011 PMCid:PMC6104409 |
52. ARDS Network. http://www.ardsnetorg/files/ventilator_protocol_2008-07pdf. Accessed August 2022. |
53. Gruber PC, Gomersall CD, Leung P, et al. Randomized controlled trial comparing adaptive-support ventilation with pressure-regulated volume-controlled ventilation with automode in weaning patients after cardiac surgery. Anesthesiology 2008; 109:81-87. https://doi.org/10.1097/ALN.0b013e31817881fc PMid:18580176 |
54. Iotti GA, Polito A, Belliato M, et al. Adaptive support ventilation versus conventional ventilation for total ventilatory support in acute respiratory failure. Intensive Care Med 2010; 36:1371-1379. https://doi.org/10.1007/s00134-010-1917-2 PMid:20502870 |
55. Arnal JM, Garnero A, Novonti D, et al. Feasibility study on full closed-loop control ventilation (IntelliVent-ASV) in ICU patients with acute respiratory failure: a prospective observational comparative study. Crit Care 2013; 17:R196. https://doi.org/10.1186/cc12890 PMid:24025234 PMCid:PMC4056360 |
56. Arnal JM, Saoli M, Garnero A. Airway and transpulmonary driving pressures and mechanical powers selected by INTELLiVENT-ASV in passive, mechanically ventilated ICU patients. Heart Lung 2020; 49:427-434. https://doi.org/10.1016/j.hrtlng.2019.11.001 PMid:31733881 |
57. Zhang Z, Zheng B, Liu N, et al. Mechanical power normalized to predicted body weight as a predictor of mortality in patients with acute respiratory distress syndrome. Intensive Care Med 2019; 45:856-864. https://doi.org/10.1007/s00134-019-05627-9 PMid:31062050 |