Aurio Fajardo-Campoverdi, Valentina Vargas, Patrick Sepúlveda-Barisich, Alberto Medina, Adrián Gallardo, Victor Pérez-Cateriano, Mauricio Parada-Gereda, Romina Lijerón-León
Cite
Fajardo-Campoverdi A, Vargas V, Sepúlveda-Barisich P, Medina A, Gallardo A, Pérez-Cateriano V, Parada-Gereda M, Lijerón-León R. Barotrauma: The statistical fallacy. A non-conventional scoping review with Bayesian meta-analysis. J Mech Vent 2024; 5(4):139-148.
Abstract
Background
Mechanical ventilator-associated damage has a high relevance in the clinical outcomes of critically ill patients. Barotrauma is a colloquial premise that has not been questioned, while other concepts such as mechanotransduction based on time-dependent viscoelastic models derived from materials engineering and physics appear as a more solid and clinically plausible postulate. This scoping review aims to provide a hypothesis that correlates lung injury associated with mechanical ventilation with dynamic ventilatory variables and inherent energy transfer.
Methods
Systematic review and Bayesian meta-analysis PubMed database was searched from inception to November 20, 2024, for studies providing ventilatory parameters collected from ICU admission. The quality of the studies was independently assessed using the RoB2 Cochrane tool.
Results
A total of 7 studies were included for a total of 4298 patients. Of the total sample, 6.6% exhibited pneumothorax, with a mean peak inspiratory pressure of 35.1 cmH2O and 26.2 cmH2O plateau pressure. There was no correlation with any ventilatory mode, while mechanical power presented a poor negative correlation with barotrauma. The variables that presented the highest correlation with barotrauma were respiratory rate, driving pressure and elastic static power.
Conclusions
Available data show that, dynamic variables such as respiratory rate, in combination with static variables such as driving pressure, could comprehensively explain the concept of lung injury associated with mechanical ventilation, giving rise to more complex hypotheses such as mechanotransduction and rendering barotrauma as an obsolete premises.
Keywords: barotrauma, VALI, mechanical ventilation, energy transfer
References
1. Fajardo-Campoverdi A, Daoud EG. Ventilator associated or induced lung injury. Does the name matter? Point and counterpoint. J Mech Vent 2024; 5(3):97-102. https://doi.org/10.53097/JMV.10106 | |||
2. Slutsky AS. Consensus conference on mechanical ventilation–January 28-30, 1993 at Northbrook, Illinois, USA. Part I. European Society of Intensive Care Medicine, the ACCP and the SCCM. Intensive Care Med 1994; 20(1):64-79. https://doi.org/10.1007/BF02425061 PMid:8163765 | |||
3. Ricard JD, Dreyfuss D, Saumon G. Ventilator-induced lung injury. Eur Respir J Suppl 2003; 42:2s- 9s. https://doi.org/10.1183/09031936.03.00420103 PMid:12945994 | |||
4. Webb HH, Tierney DF. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis 1974; 110(5):556-565. | |||
5. Modesto i Alapont V, Aguar Carrascosa M, Medina Villanueva A. Implicaciones clínicas de la teoría reológica en la prevención de la lesión pulmonar inducida por el ventilador. ¿Es la potencia mecánica la solución? Med Intensiva 2019; 43(6):373-381. https://doi.org/10.1016/j.medin.2018.06.005 PMid:30446230 | |||
6. Modesto i Alapont V, Aguar Carrascosa M, Medina Villanueva A. Stress, strain and mechanical power: Is material science the answer to prevent ventilator induced lung injury? Medicina Intensiva 2019; 43(3):165-175. https://doi.org/10.1016/j.medine.2018.06.004 | |||
7. Fajardo-Campoverdi A, Mamani-Cruz L, Ibarra-Estrada M, et al. Cyclic energy: the transcendental relevance of respiratory rate. A retrospective observational study with Bayesian analysis. J Mech Vent 2023; 5(1):1-10. https://doi.org/10.53097/JMV.10093 | |||
8. Fajardo-Campoverdi A, Ibarra-Estrada M, González-Castro A, et al. High rate-trauma: the new world order? Medicina Intensiva 2024; 48(8):490-492. https://doi.org/10.1016/j.medin.2024.03.002 PMid:38594111 | |||
9. Zhang X, Kinnick RR, Greenleaf JF. Viscoelasticity of lung tissue with surface wave method. In: 2008 IEEE Ultrasonics Symposium 2008; 21-23. https://doi.org/10.1109/ULTSYM.2008.0006 | |||
10. Chess PR, O’Reilly MA, Sachs F, et al. Reactive oxidant and p42/44 MAP kinase signaling is necessary for mechanical strain-induced proliferation in pulmonary epithelial cells. J Appl Physiol (1985) 2005; 99(3):1226-1232. https://doi.org/10.1152/japplphysiol.01105.2004 PMid:15890751 | |||
11. Tricco AC, Lillie E, Zarin W, et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann Intern Med 2018; 169(7):467-473. https://doi.org/10.7326/M18-0850 PMid:30178033 | |||
12. Sterne JAC, Savović J, Page MJ, et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019; 366:4898. https://doi.org/10.1136/bmj.l4898 PMid:31462531 | |||
13. Hodgson C, Keating JL, Holland AE, et al. Recruitment manoeuvres for adults with acute lung injury receiving mechanical ventilation. Cochrane Database Syst Rev 2009; (2):CD006667. https://doi.org/10.1002/14651858.CD006667.pub2 | |||
14. Cavalcanti AB, Suzumura ÉA, Laranjeira LN, et al. Effect of lung recruitment and titrated positive end-expiratory pressure (PEEP) vs low PEEP on mortality in patients with acute respiratory distress syndrome: A randomized clinical trial. JAMA 2017; 318(14):1335-1345. https://doi.org/10.1001/jama.2017.14171 PMid:28973363 PMCid:PMC5710484 | |||
15. Amato MBP, Meade MO, Slutsky AS, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 2015; 372(8):747-755. https://doi.org/10.1056/NEJMsa1410639 PMid:25693014 | |||
16. González-Castro A, Medina Villanueva A, Escudero-Acha P, et al. Comprehensive study of mechanical power in controlled mechanical ventilation: Prevalence of elevated mechanical power and component analysis. Medicina Intensiva 2024; 48(3):155-164. https://doi.org/10.1016/j.medin.2023.10.006 PMid:37996266 | |||
17. Costa ELV, Slutsky AS, Brochard LJ, et al. Ventilatory variables and mechanical power in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 2021; 204(3):303-311. https://doi.org/10.1164/rccm.202009-3467OC PMid:33784486 | |||
18. Marini JJ, Thornton LT, Rocco PRM, et al. Practical assessment of risk of VILI from ventilating power: a conceptual model. Crit Care 2023; 27(1):157. https://doi.org/10.1186/s13054-023-04406-9 PMid:37081517 PMCid:PMC10120146 | |||
19. Acute Respiratory Distress Syndrome Network; Brower RG, Matthay MA, Morris A, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000; 342(18):1301-1308. https://doi.org/10.1056/NEJM200005043421801 PMid:10793162 | |||
20. Brower RG, Lanken PN, MacIntyre N, et al. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 2004; 351(4):327-336. https://doi.org/10.1056/NEJMoa032193 PMid:15269312 | |||
21. Kacmarek RM, Villar J, Sulemanji D, et al. Open lung approach for the acute respiratory distress syndrome: A pilot randomized controlled trial. Crit Care Med 2016; 44(1):32-42. https://doi.org/10.1097/CCM.0000000000001383 PMid:26672923 | |||
22. Meade MO, Cook DJ, Guyatt GH, et al. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: A randomized controlled trial. JAMA 2008; 299(6):637-645. https://doi.org/10.1001/jama.299.6.637 PMid:18270352 | |||
23. Chopra A, Al-Tarbsheh AH, Shah NJ, et al. Pneumothorax in critically ill patients with COVID-19 infection: Incidence, clinical characteristics and outcomes in a case control multicenter study. Respir Med 2021; 184:106464. https://doi.org/10.1016/j.rmed.2021.106464 PMid:34044224 PMCid:PMC8116127 | |||
24. Bouhuys A. Physiology and musical Instruments. Nature 1969; 221(5187):1199-1204. https://doi.org/10.1038/2211199a0 PMid:5773830 | |||
25. Fiz JA, Aguilar J, Carreras A, et al. Maximum respiratory pressures in trumpet players. Chest 1993;104(4):1203-1204. https://doi.org/10.1378/chest.104.4.1203 PMid:8404193 | |||
26. Schorr-Lesnick B, Teirstein AS, Brown LK, et al. Pulmonary function in singers and wind-instrument players. Chest 1985; 88(2):201-205. https://doi.org/10.1378/chest.88.2.201 PMid:4017673 | |||
27. Akgün N, Ozgönül H. Lung volumes in wind instrument (zurna) players. Am Rev Respir Dis 1967; 96(5):946-951. | |||
28. Gammon RB, Shin MS, Buchalter SE. Pulmonary barotrauma in mechanical ventilation; Patterns and risk factors. Chest 1992; 102(2):568-572. https://doi.org/10.1378/chest.102.2.568 PMid:1643949 | |||
29. Liu Z, Zhang Z, Ritchie RO. Structural orientation and anisotropy in biological materials: functional designs and mechanics. Adv Funct Mater 2020; 30(10):1908121. https://doi.org/10.1002/adfm.201908121 | |||
30. Anzueto A, Frutos-Vivar F, Esteban A, et al. Incidence, risk factors and outcome of barotrauma in mechanically ventilated patients. Intensive Care Med 2004; 30(4):612-619. https://doi.org/10.1007/s00134-004-2187-7 PMid:14991090 | |||
31. Shrestha DB, Sedhai YR, Budhathoki P, et al. Pulmonary barotrauma in COVID-19: A systematic review and meta-analysis. Ann Med Surg 2022;73:103221. https://doi.org/10.1016/j.amsu.2021.103221 PMid:35003730 PMCid:PMC8721930 | |||
32. Sklienka P, Frelich M, Burša F. Patient self-inflicted lung injury-a narrative review of pathophysiology, early recognition, and management options. J Pers Med 2023; 13(4):593. https://doi.org/10.3390/jpm13040593 PMid:37108979 PMCid:PMC10146629 |