Claudio Luciano Franck, Ehab G. Daoud
Cite
Franck CL, Daoud EG. Effects of the prone position on gas exchange and ventilatory mechanics and their correlations with mechanical power in burn patients with ARDS. J Mech Vent 2023; 5(1):21-29
Abstract
Background
Prone position has many documented benefits on severe ARDS patients especially on mortality. The benefits in ARDS secondary to severe burns have not been fully documented.
Aim
To quantify the effects of prone positioning on gas exchange, ventilatory mechanics and their correlations with mechanical power in burn subjects with ARDS.
Methods
Cross-sectional observational analytical study that took place between January 2023 and October 2023 in Burns ICU in Brazil on subjects with moderate to severe ARDS ventilated with the volume controlled mode. Data were collected in the first prone positioning lasting 24 hours in the first 30 minutes after changing position and 30 minutes before returning to the supine position. The parameters of the components of mechanical ventilation and mechanical power calculated by the Gatinoni’s formula (respiratory rate, tidal volume, driving pressure, PEEP, peak and plateau pressures) were collected to evaluate ventilatory mechanics, and the values of the FiO2, PaO2, PaO2/FiO2 ratio, SpO2, EtCO2, PaCO2, PaCO2 – EtCO2 gradient to assess gas exchange.
Mean, minimum and maximum values, 1st and 3rd quartiles, median and standard deviation are calculated. To compare the results obtained at the two evaluation moments, the student’s t-test for dependent samples and non-parametric Wilcoxon tests were considered. To evaluate the association between the variation between the two moments of each variable, and the variation in mechanical power, the Pearson correlation coefficient was calculated. The normality of the variables was assessed using the Jarque-Béra test. P values <0.05 indicated statistical significance.
Results
Except for EtCO2 (P 0.939) and PaCO2 (P 0.391) all other variables presented statistical significance in relation to their variations with reduction in FiO2 (P <0.001), reduction in PaCO2 – EtCO2 gradient (P 0.011), and increases in PaO2 (P 0.008), PaO2/FiO2 (P <0.001), SpO2 (P 0.004).
In the analysis of variables, reduction in respiratory rate (P 0.142), VT (P 0.385), peak pressure (P 0.085), plateau pressure (P 0.009), PEEP (P 0.032), driving pressure (P 0.083), elastance (P 0.180), mechanical power (P < 0.001) with increase static compliance (P 0.414) and resistance pressure (P 0.443). Among the ventilatory mechanics variables, only the reductions in plateau pressure, PEEP, and mechanical power showed statistical significance.
Conclusion
The prone position in burns induced ARDS improved oxygenation and reduced arterial partial pressure to end tidal CO2 gradient, furthermore, reducing plateau pressures and PEEP, which in turn reduced mechanical power.
Keywords
mechanical power, burns, ARDS, prone position
References
1. Porter C, Tompkins RG, Finnerty CC et al. The metabolic stress response to burn trauma: current understanding and therapies. Lancet 2016; 388(10052):1417-1426. https://doi.org/10.1016/S0140-6736(16)31469-6 PMid:27707498 | |||
2. Jeschke MG, van Baar ME, Choudhry MA, et al. Burn injury. Nat Rev Dis Primers. 2020; 6(1):11. https://doi.org/10.1038/s41572-020-0145-5 PMid:32054846 PMCid:PMC7224101 | |||
3. Rotta AT, Kunrath CLB, Wiryawan B. O manejo da síndrome do desconforto respiratório agudo. J Pediatr 2003; 79(suppl 2):149-160. https://doi.org/10.1590/S0021-75572003000800004 | |||
4. Shirani KZ, Pruitt BA Jr, Mason AD Jr. The influence of inhalation injury and pneumonia on burn mortality. Ann Surg 1987; 205(1):82-87. https://doi.org/10.1097/00000658-198701000-00015 PMid:3800465 PMCid:PMC1492872 | |||
5. Xiao K, Chen WX, Li XJ. Analysis of risk factors of prolonged mechanical ventilation in patients with severe burn injury. Clin Respir J 2023; 17(8):791-798. https://doi.org/10.1111/crj.13673 PMid:37519126 PMCid:PMC10435940 | |||
6. Foncerrada G, Culnan DM, Capek KD et al. Inhalation injury in the burned patient. Ann Plast Surg 2018; 80(3 Suppl 2):S98-S105. https://doi.org/10.1097/SAP.0000000000001377 PMid:29461292 PMCid:PMC5825291 | |||
7. Vasques F, Duscio E, Pasticci I, et al. Is the mechanical power the final word on ventilator-induced lung injury? we are not sure. Annals of translational medicine 2018; 6(19)395. https://doi.org/10.21037/atm.2018.08.17 PMid:30460269 PMCid:PMC6212351 | |||
8. Coppola S, Caccioppola A, Froio S, et al. Effect of mechanical power on intensive care mortality in ARDS patients. Critical Care 2020; 24(246):2-10. https://doi.org/10.1186/s13054-020-02963-x PMid:32448389 PMCid:PMC7245621 | |||
9. Chi Y, He HW, Long Y. Progress of mechanical power in the intensive care unit. Chinese Medical Journal 2020; 133(18):2197-2204. https://doi.org/10.1097/CM9.0000000000001018 PMid:32842009 PMCid:PMC7508452 | |||
10. Van der Meijden S, Molenaar M, Somhorst P et al. Calculation mechanical power for pressure-controlled ventilation. Intensive Care Med 2019; 45(20):1495-1497. https://doi.org/10.1007/s00134-019-05698-8 PMid:31359082 | |||
11. Maiolo G, Collino F, Vasques F et al. Reclassifying acute respiratory distress syndrome. Am J Respir Crit Care Med 2018; 197(12):1586-1595. https://doi.org/10.1164/rccm.201709-1804OC PMid:29345967 | |||
12. Marini JJ, Gattinoni L, Rocco PRM. Estimating the damaging power of high stress ventilation Respir Care 2020; 65(7):1046-1052. https://doi.org/10.4187/respcare.07860 PMid:32606007 | |||
13. Messerole E, Peine P, Wittkopp S et al. The pragmatics of prone positioning. Am J Respir Crit Care Med 2002; 165(10):1359-1363. https://doi.org/10.1164/rccm.2107005 PMid:12016096 | |||
14. Johnson NJ, Luks AM, Glenny RW. Gas exchange in the prone posture. Respir Care 2017; 62(8):1097-1110. https://doi.org/10.4187/respcare.05512 PMid:28559471 | |||
15. Hale DF, Cannon JW, Batchinsky AI et al. Prone positioning improves oxygenation in adult burn patients with severe acute respiratory distress syndrome. J Trauma Acute Care Surg 2012; 72(6):1634-1639. https://doi.org/10.1097/TA.0b013e318247cd4f PMid:22695433 | |||
16. Franck CL. Prone position in pregnant woman with major burns with severe ARDS on mechanical ventilation. J Mech Vent 2023; 4(2):93-96. https://doi.org/10.53097/JMV.10079 | |||
17. Papazian L, Munshi L, Guérin C. Prone position in mechanically ventilated patients. Intensive Care Med 2022; 48(8):1062-1065. https://doi.org/10.1007/s00134-022-06731-z PMid:35652920 PMCid:PMC9160174 | |||
18. Mezidi M, Guérin C. Effects of patient positioning on respiratory mechanics in mechanically ventilated ICU patients. Ann Transl Med 2018; 6(19):384. https://doi.org/10.21037/atm.2018.05.50 PMid:30460258 PMCid:PMC6212360 | |||
19. Usmani A, Pipal DK, Bagla H, et al. Prediction of mortality in acute thermal burn patients using the abbreviated burn severity index score: A single-center experience. Cureus 2022; 14(6):e26161. https://doi.org/10.7759/cureus.26161 | |||
20. Gattinoni L, Tonetti T, Cressoni M, et al. Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med 2016; 42(10):1567-1575. https://doi.org/10.1007/s00134-016-4505-2 PMid:27620287 | |||
21. La Vita CJ, De Santis Santiago RR. Prone position: A strategy in expansion? Respir Care 2021; 66(5):884-885. https://doi.org/10.4187/respcare.09131 PMid:33931520 | |||
22. Guérin C, Albert RK, Beitler J et al. Prone position in ARDS patients: why, when, how and for whom. Intensive Care Med 2020; 46(12):2385-2396. https://doi.org/10.1007/s00134-020-06306-w PMid:33169218 PMCid:PMC7652705 | |||
23. Fonseca RSA, Boniatti VMC, Carneiro Teixeira MC et al. Mechanical power in prone position intubated patients with COVID-19-related ARDS: A cohort study. Crit Care Res Pract 2023; 6604313. https://doi.org/10.1155/2023/6604313 PMid:36911499 PMCid:PMC9995186 | |||
24. Nemec H, Cheng A, Chestovich P, et al. Assessing the impact of prone positioning among adult burn patients with Acute Respiratory Distress Syndrome. Journal of Burn Care & Research 2023; 44:S132-S133. https://doi.org/10.1093/jbcr/irad045.186 PMCid:PMC10185149 | |||
25. Aeen FB, Pakzad R, Rad MG, et al. Effect of prone position on respiratory parameters, intubation and death rate in COVID-19 patients: systematic review and meta-analysis. Sci Rep 2021; 11(1)14407. https://doi.org/10.1038/s41598-021-93739-y PMid:34257366 PMCid:PMC8277853 | |||
26. Respiratory Physiology: The Essentials, John B. West, 7th edition . Philadelphia : Wolters Kluwer Health/Lippincott Williams & Wilkins; 2005:169. | |||
27. Yousuf T, Brinton T, Murtaza G, et al. Establishing a gradient between partial pressure of arterial carbon dioxide and end-tidal carbon dioxide in patients with acute respiratory distress syndrome. J Investig Med 2017; 65(2):338-341. https://doi.org/10.1136/jim-2016-000253 PMid:27742745 | |||
28. Lai C, Monnet X, Teboul JL. Hemodynamic implications of prone positioning in patients with ARDS. Crit Care 2023; 27(1):98. https://doi.org/10.1186/s13054-023-04369-x PMid:36941694 PMCid:PMC10027593 | |||
29. Laghlam D, Charpentier J, Hamou ZA, et al. Effects of prone positioning on respiratory mechanics and oxygenation in critically ill patients with COVID-19 requiring venovenous extracorporeal membrane oxygenation. Front Med 2022; 8:810393. https://doi.org/10.3389/fmed.2021.810393 PMid:35111786 PMCid:PMC8801420 | |||
30. Franck CL, Franck GM. Influence of mechanical power and its components on mechanical ventilation in SARS-CoV-2. Rev Bras Ter Intensiva 2022; 34:212-219. https://doi.org/10.5935/0103-507X.20220018-en PMid:35946651 PMCid:PMC9354101 | |||
31. Riad Z, Mezidi M, Subtil F, et al. Short-term effects of the prone positioning maneuver on lung and chest wall mechanics in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 2018; 197(10):1355-1358. https://doi.org/10.1164/rccm.201709-1853LE PMid:29232156 | |||
32. Mentzelopoulos SD, Roussos C, Zakynthinos SG. Prone position reduces lung stress and strain in severe acute respiratory distress syndrome. Eur Respir J 2005; 25(3):534-544. https://doi.org/10.1183/09031936.05.00105804 PMid:15738300 | |||
33. Boesing C, Graf PT, Schmitt F, et al. Effects of different positive end-expiratory pressure titration strategies during prone positioning in patients with acute respiratory distress syndrome: a prospective interventional study. Critical Care 2022; 26(1):82. https://doi.org/10.1186/s13054-022-03956-8 PMid:35346325 PMCid:PMC8962042 | |||
34. Redaelli S, von Wedel D, Suleiman A, et al. Mechanical power during prone positioning in critically ill patients. Am J Respir Crit Care Med 2023;207:A4564. https://doi.org/10.1164/ajrccm-conference.2023.207.1_MeetingAbstracts.A4564 | |||
35. Cornejo RA, Diaz JC, Tobar EA, et al. Effects of prone positioning on lung protection in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 2013; 188:440-448. https://doi.org/10.1164/rccm.201207-1279OC PMid:23348974 | |||
36. Fossali T, Pavlovsky B, Ottolina D et al. Effects of prone position on lung recruitment and ventilation-perfusion matching in patients with COVID-19 acute respiratory distress syndrome: A combined CT Scan/Electrical Impedance Tomography study. Crit Care Med 2022; 50(5):723-732. https://doi.org/10.1097/CCM.0000000000005450 PMid:35200194 PMCid:PMC9005091 | |||
37. Su M, Yamasaki K, Daoud EG. Effect of trendelenburg position during prone ventilation in fifteen COVID-19 patients. J Mech Vent 2021; 2(4):125-130. https://doi.org/10.53097/JMV.10035 |