Effects of the prone position on gas exchange and ventilatory mechanics and their correlations with mechanical power in burn patients with ARDS

Claudio Luciano Franck, Ehab G. Daoud

Cite

Franck CL, Daoud EG. Effects of the prone position on gas exchange and ventilatory mechanics and their correlations with mechanical power in burn patients with ARDS.  J Mech Vent 2023; 5(1):21-29

Metrics

286 Downloads

Abstract

Background

Prone position has many documented benefits on severe ARDS patients especially on mortality. The benefits in ARDS secondary to severe burns have not been fully documented.

Aim

To quantify the effects of prone positioning on gas exchange, ventilatory mechanics and their correlations with mechanical power in burn subjects with ARDS.

Methods

Cross-sectional observational analytical study that took place between January 2023 and October 2023 in  Burns ICU in Brazil on subjects with moderate to severe ARDS ventilated with the volume controlled mode. Data were collected in the first prone positioning lasting 24 hours in the first 30 minutes after changing position and 30 minutes before returning to the supine position. The parameters of the components of mechanical ventilation and mechanical power calculated by the Gatinoni’s formula (respiratory rate, tidal volume, driving pressure, PEEP, peak and plateau pressures) were collected to evaluate ventilatory mechanics, and the values of the FiO2, PaO2, PaO2/FiO2 ratio, SpO2, EtCO2, PaCO2, PaCO2 – EtCO2 gradient to assess gas exchange.

Mean, minimum and maximum values, 1st and 3rd quartiles, median and standard deviation are calculated. To compare the results obtained at the two evaluation moments, the student’s t-test for dependent samples and non-parametric Wilcoxon tests were considered. To evaluate the association between the variation between the two moments of each variable, and the variation in mechanical power, the Pearson correlation coefficient was calculated. The normality of the variables was assessed using the Jarque-Béra test. P values <0.05 indicated statistical significance.

Results

Except for EtCO2 (P 0.939) and PaCO2 (P 0.391) all other variables presented statistical significance in relation to their variations with reduction in FiO2 (P <0.001), reduction in PaCO2 – EtCO2 gradient (P 0.011), and increases in PaO2 (P 0.008), PaO2/FiO2 (P <0.001), SpO2 (P 0.004).

In the analysis of variables, reduction in respiratory rate (P 0.142), VT (P 0.385), peak pressure (P 0.085), plateau pressure (P 0.009), PEEP (P 0.032), driving pressure (P 0.083), elastance (P 0.180), mechanical power (P < 0.001) with increase static compliance (P 0.414) and resistance pressure (P 0.443). Among the ventilatory mechanics variables, only the reductions in plateau pressure, PEEP, and mechanical power showed statistical significance.

Conclusion

The prone position in burns induced ARDS improved oxygenation and reduced arterial partial pressure to end tidal CO2 gradient, furthermore, reducing plateau pressures and PEEP, which in turn reduced mechanical power.

Keywords

mechanical power, burns, ARDS, prone position

References

1. Porter C, Tompkins RG, Finnerty CC et al. The metabolic stress response to burn trauma: current understanding and therapies. Lancet 2016; 388(10052):1417-1426.
https://doi.org/10.1016/S0140-6736(16)31469-6
PMid:27707498
2. Jeschke MG, van Baar ME, Choudhry MA, et al. Burn injury. Nat Rev Dis Primers. 2020; 6(1):11.
https://doi.org/10.1038/s41572-020-0145-5
PMid:32054846 PMCid:PMC7224101
3. Rotta AT, Kunrath CLB, Wiryawan B. O manejo da síndrome do desconforto respiratório agudo. J Pediatr 2003; 79(suppl 2):149-160.
https://doi.org/10.1590/S0021-75572003000800004
4. Shirani KZ, Pruitt BA Jr, Mason AD Jr. The influence of inhalation injury and pneumonia on burn mortality. Ann Surg 1987; 205(1):82-87.
https://doi.org/10.1097/00000658-198701000-00015
PMid:3800465 PMCid:PMC1492872
5. Xiao K, Chen WX, Li XJ. Analysis of risk factors of prolonged mechanical ventilation in patients with severe burn injury. Clin Respir J 2023; 17(8):791-798.
https://doi.org/10.1111/crj.13673
PMid:37519126 PMCid:PMC10435940
6. Foncerrada G, Culnan DM, Capek KD et al. Inhalation injury in the burned patient. Ann Plast Surg 2018; 80(3 Suppl 2):S98-S105.
https://doi.org/10.1097/SAP.0000000000001377
PMid:29461292 PMCid:PMC5825291
7. Vasques F, Duscio E, Pasticci I, et al. Is the mechanical power the final word on ventilator-induced lung injury? we are not sure. Annals of translational medicine 2018; 6(19)395.
https://doi.org/10.21037/atm.2018.08.17
PMid:30460269 PMCid:PMC6212351
8. Coppola S, Caccioppola A, Froio S, et al. Effect of mechanical power on intensive care mortality in ARDS patients. Critical Care 2020; 24(246):2-10.
https://doi.org/10.1186/s13054-020-02963-x
PMid:32448389 PMCid:PMC7245621
9. Chi Y, He HW, Long Y. Progress of mechanical power in the intensive care unit. Chinese Medical Journal 2020; 133(18):2197-2204.
https://doi.org/10.1097/CM9.0000000000001018
PMid:32842009 PMCid:PMC7508452
10. Van der Meijden S, Molenaar M, Somhorst P et al. Calculation mechanical power for pressure-controlled ventilation. Intensive Care Med 2019; 45(20):1495-1497.
https://doi.org/10.1007/s00134-019-05698-8
PMid:31359082
11. Maiolo G, Collino F, Vasques F et al. Reclassifying acute respiratory distress syndrome. Am J Respir Crit Care Med 2018; 197(12):1586-1595.
https://doi.org/10.1164/rccm.201709-1804OC
PMid:29345967
12. Marini JJ, Gattinoni L, Rocco PRM. Estimating the damaging power of high stress ventilation Respir Care 2020; 65(7):1046-1052.
https://doi.org/10.4187/respcare.07860
PMid:32606007
13. Messerole E, Peine P, Wittkopp S et al. The pragmatics of prone positioning. Am J Respir Crit Care Med 2002; 165(10):1359-1363.
https://doi.org/10.1164/rccm.2107005
PMid:12016096
14. Johnson NJ, Luks AM, Glenny RW. Gas exchange in the prone posture. Respir Care 2017; 62(8):1097-1110.
https://doi.org/10.4187/respcare.05512
PMid:28559471
15. Hale DF, Cannon JW, Batchinsky AI et al. Prone positioning improves oxygenation in adult burn patients with severe acute respiratory distress syndrome. J Trauma Acute Care Surg 2012; 72(6):1634-1639.
https://doi.org/10.1097/TA.0b013e318247cd4f
PMid:22695433
16. Franck CL. Prone position in pregnant woman with major burns with severe ARDS on mechanical ventilation. J Mech Vent 2023; 4(2):93-96.
https://doi.org/10.53097/JMV.10079
17. Papazian L, Munshi L, Guérin C. Prone position in mechanically ventilated patients. Intensive Care Med 2022; 48(8):1062-1065.
https://doi.org/10.1007/s00134-022-06731-z
PMid:35652920 PMCid:PMC9160174
18. Mezidi M, Guérin C. Effects of patient positioning on respiratory mechanics in mechanically ventilated ICU patients. Ann Transl Med 2018; 6(19):384.
https://doi.org/10.21037/atm.2018.05.50
PMid:30460258 PMCid:PMC6212360
19. Usmani A, Pipal DK, Bagla H, et al. Prediction of mortality in acute thermal burn patients using the abbreviated burn severity index score: A single-center experience. Cureus 2022; 14(6):e26161.
https://doi.org/10.7759/cureus.26161
20. Gattinoni L, Tonetti T, Cressoni M, et al. Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med 2016; 42(10):1567-1575.
https://doi.org/10.1007/s00134-016-4505-2
PMid:27620287
21. La Vita CJ, De Santis Santiago RR. Prone position: A strategy in expansion? Respir Care 2021; 66(5):884-885.
https://doi.org/10.4187/respcare.09131
PMid:33931520
22. Guérin C, Albert RK, Beitler J et al. Prone position in ARDS patients: why, when, how and for whom. Intensive Care Med 2020; 46(12):2385-2396.
https://doi.org/10.1007/s00134-020-06306-w
PMid:33169218 PMCid:PMC7652705
23. Fonseca RSA, Boniatti VMC, Carneiro Teixeira MC et al. Mechanical power in prone position intubated patients with COVID-19-related ARDS: A cohort study. Crit Care Res Pract 2023; 6604313.
https://doi.org/10.1155/2023/6604313
PMid:36911499 PMCid:PMC9995186
24. Nemec H, Cheng A, Chestovich P, et al. Assessing the impact of prone positioning among adult burn patients with Acute Respiratory Distress Syndrome. Journal of Burn Care & Research 2023; 44:S132-S133.
https://doi.org/10.1093/jbcr/irad045.186
PMCid:PMC10185149
25. Aeen FB, Pakzad R, Rad MG, et al. Effect of prone position on respiratory parameters, intubation and death rate in COVID-19 patients: systematic review and meta-analysis. Sci Rep 2021; 11(1)14407.
https://doi.org/10.1038/s41598-021-93739-y
PMid:34257366 PMCid:PMC8277853
26. Respiratory Physiology: The Essentials, John B. West, 7th edition . Philadelphia : Wolters Kluwer Health/Lippincott Williams & Wilkins; 2005:169.
27. Yousuf T, Brinton T, Murtaza G, et al. Establishing a gradient between partial pressure of arterial carbon dioxide and end-tidal carbon dioxide in patients with acute respiratory distress syndrome. J Investig Med 2017; 65(2):338-341.
https://doi.org/10.1136/jim-2016-000253
PMid:27742745
28. Lai C, Monnet X, Teboul JL. Hemodynamic implications of prone positioning in patients with ARDS. Crit Care 2023; 27(1):98.
https://doi.org/10.1186/s13054-023-04369-x
PMid:36941694 PMCid:PMC10027593
29. Laghlam D, Charpentier J, Hamou ZA, et al. Effects of prone positioning on respiratory mechanics and oxygenation in critically ill patients with COVID-19 requiring venovenous extracorporeal membrane oxygenation. Front Med 2022; 8:810393.
https://doi.org/10.3389/fmed.2021.810393
PMid:35111786 PMCid:PMC8801420
30. Franck CL, Franck GM. Influence of mechanical power and its components on mechanical ventilation in SARS-CoV-2. Rev Bras Ter Intensiva 2022; 34:212-219.
https://doi.org/10.5935/0103-507X.20220018-en
PMid:35946651 PMCid:PMC9354101
31. Riad Z, Mezidi M, Subtil F, et al. Short-term effects of the prone positioning maneuver on lung and chest wall mechanics in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 2018; 197(10):1355-1358.
https://doi.org/10.1164/rccm.201709-1853LE
PMid:29232156
32. Mentzelopoulos SD, Roussos C, Zakynthinos SG. Prone position reduces lung stress and strain in severe acute respiratory distress syndrome. Eur Respir J 2005; 25(3):534-544.
https://doi.org/10.1183/09031936.05.00105804
PMid:15738300
33. Boesing C, Graf PT, Schmitt F, et al. Effects of different positive end-expiratory pressure titration strategies during prone positioning in patients with acute respiratory distress syndrome: a prospective interventional study. Critical Care 2022; 26(1):82.
https://doi.org/10.1186/s13054-022-03956-8
PMid:35346325 PMCid:PMC8962042
34. Redaelli S, von Wedel D, Suleiman A, et al. Mechanical power during prone positioning in critically ill patients. Am J Respir Crit Care Med 2023;207:A4564.
https://doi.org/10.1164/ajrccm-conference.2023.207.1_MeetingAbstracts.A4564
35. Cornejo RA, Diaz JC, Tobar EA, et al. Effects of prone positioning on lung protection in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 2013; 188:440-448.
https://doi.org/10.1164/rccm.201207-1279OC
PMid:23348974
36. Fossali T, Pavlovsky B, Ottolina D et al. Effects of prone position on lung recruitment and ventilation-perfusion matching in patients with COVID-19 acute respiratory distress syndrome: A combined CT Scan/Electrical Impedance Tomography study. Crit Care Med 2022; 50(5):723-732.
https://doi.org/10.1097/CCM.0000000000005450
PMid:35200194 PMCid:PMC9005091
37. Su M, Yamasaki K, Daoud EG. Effect of trendelenburg position during prone ventilation in fifteen COVID-19 patients. J Mech Vent 2021; 2(4):125-130.
https://doi.org/10.53097/JMV.10035