Arthur Simonete, Natalia Alberti da Silva, Claudio Luciano Franck
Cite
Simonete A, Alberti da Silva N, Franck CL. Analysis of mechanical power during pressure-controlled ventilation in patients with severe burns. J Mech Vent 2023; 4(2):66-71.
ABSTRACT
Introduction
The clinical evolution of severe burns can lead to Acute Respiratory Distress Syndrome (ARDS) with increased requirements for mechanical ventilation, which may lead to the development of Ventilator-Induced Lung Injury (VILI). Together, ARDS and VILI may cause irreversible lung damage. Mechanical power measures the amount of energy transferred from the ventilator to the respiratory system and is considered to be a unifying concept of the etiology VILI. However, doubts are still to be clarified. The goals of this study were to analyze pressure-controlled ventilation (PCV) in severe burn injury patients, to associate the mechanical power values over time with the outcome of burn patients (death or survival) and to associate the components of ventilation with the outcome of burn patients.
Methods
A longitudinal, observational and analytical study of 172 measurements of parameters collected daily from the ventilators of 26 severe burn patients undergoing mechanical ventilation with PCV. Statistical analysis was performed on the obtained values and the components of mechanical ventilation in relation to the outcome of the patients.
Results
The mechanical power calculated daily in burn patients was 22.83 ± SD joule per minute (J/min). Higher values of mechanical power were significantly related to the mortality (P 0.029) regardless of ventilation time, as well as higher values of PEEP, peak pressure, plateau pressure and driving pressure ( P <0.001), respiratory rate (P 0.01), variation of inspiratory pressure (P 0.03) and lower values of tidal volume (P 0.005).
Conclusion
In this analysis of mechanical ventilation, mean values of mechanical power in burn patients were elevated and that, regardless of mechanical ventilation time, these values are related to mortality, as well as higher values of pressures, driving pressure, respiratory rate and lower values of tidal volume, indicating the importance of stress frequency and propulsion force to overcome lung elastance.
Keywords
Ventilator-Induced Lung Injury, Burns; Acute Respiratory Distress Syndrome, Intensive Care Units
References
1. Peck, MD. Epidemiology of Burn Injuries Globally. Up to date 2016. Available at: <https://www.uptodate.com/contents/epidemiology-of-burn-injuries-globally>. Accessed 04/22/2022. | |||
2. Rose LF, Chan RK. The Burn wound microenvironment. Adv Wound Care 2016; 5(3):106-118. https://doi.org/10.1089/wound.2014.0536 PMid:26989577 PMCid:PMC4779284 | |||
3. Vivó C, Galeiras R, Del Caz MDP. Initial evaluation and management of the critical burn patient. Medicina Intensiva 2016; 40(1):49-59. https://doi.org/10.1016/j.medin.2015.11.010 PMid:26724246 | |||
4. Lam NN, Hung TD, Hung DK. Acute respiratory distress syndrome among severe burn patients in a developing country: application result of the berlin definition. Ann Burns Fire Disasters 2018; 31(1):9-12. PMID: 30174564 PMCID: PMC6116651 | |||
5. Silva L, Garcia L, Oliveira B, et al. Acute respiratory distress syndrome in burn patients: incidence and risk factor analysis. Ann Burns Fire Disasters 2016; 29(3):178-182. PMID: 28149245 PMCID: PMC5266233 | |||
6. Chiumello D, Gotti M, Guanziroli M, et al. Bedside calculation of mechanical power during volume- and pressure-controlled mechanical ventilation. Crit Care 2020; 24(1):417-424. https://doi.org/10.1186/s13054-020-03116-w PMid:32653011 PMCid:PMC7351639 | |||
7. Brochard L, Slutsky A, Presenti A. Mechanical Ventilation to Minimize Progression of Lung Injury in Acute Respiratory Failure. American Journal of Respiratory and Crit Care Med 2017; 195(4):438-442. https://doi.org/10.1164/rccm.201605-1081CP PMid:27626833 | |||
8. Bhushan K. Ventilator-Induced Lung Injury: Classic and novel concepts. Respir care 2019; 64(6):629-637. https://doi.org/10.4187/respcare.07055 PMid:31110032 | |||
9. Vassalli F, Pasticci I, Romitti F, et al. Does iso-mechanical power lead to iso-lung damage? Anexperimental study in a porcine model. Anesthesiology 2020; 132(5):1126-1137. https://doi.org/10.1097/ALN.0000000000003189 PMid:32032095 | |||
10. Ferrando C, Suarez-Sipmann F, Mellado-Artigas R, et al. Clinical features, ventilatory management, and outcome of ARDS caused by COVID-19 are similar to other causes of ARDS. Intensive Care Med 2020; 46(12):2200-221. https://doi.org/10.1007/s00134-020-06192-2 PMid:32728965 PMCid:PMC7387884 | |||
11. Brochard L, Bersten A. Mechanical Power: a biomarker for the lung? Anesthesiology 2019; 130(1):9-11. https://doi.org/10.1097/ALN.0000000000002505 PMid:30383544 | |||
12. Marini JJ, Gattinoni L, Rocco PRM. Estimating the damaging power of high-stress ventilation. Respir Care 2020; 65(7):1046-1052. https://doi.org/10.4187/respcare.07860 PMid:32606007 | |||
13. Vasques F, Duscio E, Pasticci I, et al. Is the mechanical power the final word on ventilator-induced lung injury? we are not sure. Ann Transl Med 2018; 6(19):395. https://doi.org/10.21037/atm.2018.08.17 PMid:30460269 PMCid:PMC6212351 | |||
14. Coppola S, Caccioppola A, Froio S, et al. Effect of mechanical power on intensive care mortality in ARDS patients. Crit Care 2020; 24(1):246. https://doi.org/10.1186/s13054-020-02963-x PMid:32448389 PMCid:PMC7245621 | |||
15. Maiolo G, Collino F, Vasques F, et al. Reclassifying acute respiratory distress syndrome. Am J Respir Crit Care 2018; 197(12):1586-1596. https://doi.org/10.1164/rccm.201709-1804OC PMid:29345967 | |||
16. Van der Meijden S, Molenaar M, Somhorst P, et al. Calculating mechanical power for pressure-controlled ventilation. Intensive Care Med 2019; 45(20):1495-1497. https://doi.org/10.1007/s00134-019-05698-8 PMid:31359082 | |||
17. Becher T, Van der Staay M, Schädler D, et al. Calculation of mechanical power for pressure-controlled ventilation. Intensive Care Med 2019; 45:1321-1323. https://doi.org/10.1007/s00134-019-05636-8 PMid:31101961 | |||
18. Ramsay MA, Savege TM, Simpson BRJ, et al. Controlled sedation with alphaxalone-alphadolone. Br Med J 1974; 2(5920):656-659. https://doi.org/10.1136/bmj.2.5920.656 PMid:4835444 PMCid:PMC1613102 | |||
19. Kock KS, Rosa BC, Martignago N, et al. Comparison of respiratory mechanics measurment in the volume cycled ventilation (VCV) and Pressure controlled ventilation (PCV). Fisioter 2016; 29(2):229-236. https://doi.org/10.1590/0103-5150.029.002.AO02 | |||
20. Chi Y, He HW, Long Y. Progress of mechanical power in the intensive care unit. Chin Med J 2020; 133(18):2197-2204. https://doi.org/10.1097/CM9.0000000000001018 PMid:32842009 PMCid:PMC7508452 | |||
21. Arnal JM, Saoli M, Garnero A. Airway and transpulmonary driving pressures and mechanical powers selected by INTELLiVENT-ASV in passive, mechanically ventilated ICU patients. Heart Lung 2020; 49(4):427-432. https://doi.org/10.1016/j.hrtlng.2019.11.001 PMid:31733881 | |||
22. Franck CL, Franck GM, Daoud EG. Correlations of mechanical power and its components with age and its interference in the outcome of SARS-CoV-2 in subjects undergoing pressure-controlled ventilation. J Mech Vent 2022; 3(4):159-168. https://doi.org/10.53097/JMV.10063 | |||
23. Franck CL, Franck GM. Influence of mechanical power and its components on mechanical ventilation in SARS-CoV-2. Rev Bras Ter Intensiva 2022; 34(2):212-219. https://doi.org/10.5935/0103-507X.20220018-en PMid:35946651 PMCid:PMC9354101 | |||
24. Silva PL, Ball L, Rocco PRM, et al. Power to mechanical power to minimize ventilator-induced lung injury? Intensive Care Med Exp 2019; 7(38):1-11. https://doi.org/10.1186/s40635-019-0243-4 PMid:31346828 PMCid:PMC6658623 | |||
25. Marini JJ, Gattinoni L. Time course of evolving ventilator-induced lung injury: The “shrinking baby lung”. Crit Care Med 2020; 48(8):1203-1209. https://doi.org/10.1097/CCM.0000000000004416 PMid:32697492 PMCid:PMC7217130 | |||
26. Amato MBP, Barbas CS, Medeiros DM, et al. Effect of a protective ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med1998; 388(6):347-354. https://doi.org/10.1056/NEJM199802053380602 PMid:9449727 | |||
27. Amato MBP, Meade MO, Slutsky AS, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 2015. 372(8):747-755. https://doi.org/10.1056/NEJMsa1410639 PMid:25693014 | |||
28. Wiedemann HP, Arroliga AC, Fisher CJ, et al. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 2004; 351(4):327-336. https://doi.org/10.1056/NEJMoa032193 PMid:15269312 |