Pioneers in Mechanical Ventilation: Björn Jonson

Ehab G. Daoud

Cite

Daoud EG. Pioneers in Mechanical Ventilation: Björn Jonson. J Mech Vent 2022; 3(2):73-81.

Abstract

In this article, we highlight one of the pioneers of mechanical ventilation. Dr Björn Jonson is a physiologist, physician and currently a Professor Emeritus at Lund University in Sweden. He has spent the last sixty years of his life dedicated to research and inventions in the fields of respiratory failure and mechanical ventilation.

With several devices invented, more than fifteen patents, more than 200 published articles and concepts, Dr. Jonson’s work has changed and revolutionized the way we understand the science of respiratory failure, and the way we practice and monitor mechanical ventilation today. More importantly, are the countless lives of patients saved all over the world because of his contribution.

Keywords

Flow regulators, Servo Ventilator, Capnography

References

1. Neoshero. This is Björn Jonsson, who invented the modern ventilator for which he has never received a price or even a Wikipedia page [Online forum post]. Reddit. https://www.reddit.com/r/europe/comments/gtcwhv/this_is_bj%C3%B6rn_jonsson_who_invented_the_modern/
2. Jonson B, White T. Histamine metabolism in the brain of conscious cats. Proc Soc Exp Biol Med 1964; 115:874-876.
https://doi.org/10.3181/00379727-115-29061
PMid:14166591
3. Bouhuys A, Jonson B. Alveolar pressure, airflow rate, and lung inflation in man. J Appl Physiol 1967; 22(6):1086-1100.
https://doi.org/10.1152/jappl.1967.22.6.1086
PMid:6027056
4. Jonson B, Bouhuys A. Measurement of alveolar pressure. J Appl Physiol 1967; 22(6):1081-1085.
https://doi.org/10.1152/jappl.1967.22.6.1081
PMid:6027055
5. Ingelstedt S, Jonson B, Nordström L, et al. A servo‐controlled ventilator measuring expired minute volume, airway flow and pressure. Acta Anaesthesiol Scand 1972; 16:7-27.
https://doi.org/10.1111/j.1399-6576.1972.tb00593.x
PMid:4561012
6. Jonson B, Nordström L, Olsson S, et al. Monitoring of ventilation and lung mechanics during automatic ventilation. A new device. Bull Physiopathol Respir 1975; 11(5):729-743.
7. Prakash O, Jonson B, Meij S. Techniques of respiratory monitoring. Int J Clin Monit Comput 1984; 1(2):49-58.
https://doi.org/10.1007/BF01872743
PMid:6546131
8. Prakash O, Meij S, Bos E, et al. Lung mechanics in patients undergoing mitral valve replacement. The value of monitoring of compliance and resistance. Crit Care Med 1978; 6(6):370-372.
https://doi.org/10.1097/00003246-197811000-00005
PMid:720098
9. Prakash O, Jonson B, Bos E, et al. Cardiorespiratory and metabolic effects of profound hypothermia. Crit Care Med 1978; 6(5):340-346.
https://doi.org/10.1097/00003246-197809000-00011
PMid:720092
10. Olsson S, Fletcher R, Jonson B, et al. Clinical studies of gas exchange during ventilatory support-a method using the Siemens-Elema CO2 analyzer. Br J Anaesth 1980; 52(5):491-499.
https://doi.org/10.1093/bja/52.5.491
PMid:6770881
11. Fletcher R, Jonson B, Cumming G, et al. The concept of deadspace with special reference to the single breath test for carbon dioxide. Br J Anaesth 1981;53 (1):77-88.
https://doi.org/10.1093/bja/53.1.77
PMid:6779846
12. Fletcher R, Jonson B. Prediction of the physiological dead space/tidal volume ratio during anaesthesia/IPPV from simple pre‐operative tests. Acta Anaesthesiol Scand 1981;2 5(1):58-62.
https://doi.org/10.1111/j.1399-6576.1981.tb01606.x
PMid:7027720
13. Fletcher R, Jonson B. Deadspace and the single breath test for carbon dioxide during anaesthesia and artificial ventilation: effects of tidal volume and frequency of respiration. Br J Anaesth 1984; 56(2):109-119.
https://doi.org/10.1093/bja/56.2.109
PMid:6419753
14. Fletcher R, Jonson B. A new method for calculation of ventilatory deadspace. British Journal of Anaesthesia 1989; 63(5):639-640.
https://doi.org/10.1093/bja/63.5.639
PMid:2605089
15. Fletcher R, Malmkvist G, Niklason L, et al. On‐line measurement of gas‐exchange during cardiac surgery. Acta Anaesthesiol Scand 1986; 30(4):295-299.
https://doi.org/10.1111/j.1399-6576.1986.tb02417.x
PMid:3488633
16. Fletcher R, Nordström L, Werner O, et al. A possible source of error in gas exchange measurements. Anesthesiology 1983; 59(1):77.
https://doi.org/10.1097/00000542-198307000-00017
PMid:6574720
17. Ahlström H, Jonson B, Svenningsen NW. Continuous positive airway pressure with a face chamber in early treatment of idiopathic respiratory distress syndrome. Acta Paediatr 1973; 62(4):433-436.
https://doi.org/10.1111/j.1651-2227.1973.tb08132.x
PMid:4580949
18. Svenningsen NW, Jonson B, Lindroth M, et al. Consecutive study of early CPAP-application in hyaline membrane disease. Eur J Pediatr 1979; 131(1):9-19.
https://doi.org/10.1007/BF00442781
PMid:374081
19. Ahlström H, Jonson B. Pulmonary mechanics in infants. Methodological aspects.Scand. J. Respir. Disects. .ects. Scand J Respir Dis 1974; 55(2):129-140.
20. Ahlström H, Jonson B. Pulmonary mechanics during the first year of life. Scand J Respir Dis 1974; 55(2):141-154.
21. Ahlström H, Jonson B, Svenningsen NW. Continuous postive airways pressure treatment by a face chamber in idiopathic respiratory distress syndrome. Arch Dis Child 1976; 51(1):13-21.
https://doi.org/10.1136/adc.51.1.13
PMid:782373 PMCid:PMC1545876
22. Andreasson B, Lindroth M, Svenningsen NW, et al. Measurement of ventilation and respiratory mechanics during continuous positive airway pressure (CPAP) treatment in infants. Acta Paediatr Scand 1989; 78(2):194-204.
https://doi.org/10.1111/j.1651-2227.1989.tb11056.x
PMid:2648760
23. Wollmer P, Evander E, Jonson B, Lachmann B. Pulmonary clearance of inhaled 99mTc‐DTPA: effect of surfactant depletion in rabbits. Clin Physiol 1986; 6(1):85-89.
https://doi.org/10.1111/j.1475-097X.1986.tb00145.x
PMid:3510804
24. Liu JM, Evander E, Zhao J, et al. Alveolar albumin leakage during large tidal volume ventilation and surfactant dysfunction. Clin Physiol 2001; 21(4):421-427.
https://doi.org/10.1046/j.1365-2281.2001.00348.x
PMid:11442575
25. John J, Taskar V, Evander E, et al. Additive nature of distension and surfactant perturbation on alveolocapillary permeability. Eur Respir J 1997; 10(1):192-199.
https://doi.org/10.1183/09031936.97.10010192
PMid:9032514
26. Evander E, Wollmer P, Valind S, et al. Biexponential pulmonary clearance of 99mTc-DTPA induced by detergent aerosol. J Appl Physiol 1994; 77(1):190-196.
https://doi.org/10.1152/jappl.1994.77.1.190
PMid:7525528
27. Evander E, Wollmer P, Jonson B, et al. Pulmonary clearance of inhaled 99mTc-DTPA: effects of surfactant depletion by lung lavage. J Appl Physiol 1987; 62(4):1611-1614.
https://doi.org/10.1152/jappl.1987.62.4.1611
PMid:3298194
28. Evander E, Wollmer P, Jonson B. Pulmonary clearance of inhaled 99mTc-DTPA: effect of the detergent dioctyl sodium sulfosuccinate in aerosol. Clin Physiol 1988; 8(2):105-111.
https://doi.org/10.1111/j.1475-097X.1988.tb00198.x
PMid:2452046
29. Svantesson C, John J, Taskar V, et al. Respiratory mechanics in rabbits ventilated with different tidal volumes. Respir Physiol 1996; 106(3):307-316.
https://doi.org/10.1016/S0034-5687(96)00084-9
30. Taskar V, John J, Evander E, et al. Healthy lungs tolerate repetitive collapse and reopening during short periods of mechanical ventilation. Acta Anaesthesiol Scand 1995; 39(3):370-376.
https://doi.org/10.1111/j.1399-6576.1995.tb04080.x
PMid:7793219
31. Taskar V, John J, Evander E, et al. Surfactant dysfunction makes lungs vulnerable to repetitive collapse and reexpansion. Am J Respir Crit Care Med 1997;155(1):313-320.
https://doi.org/10.1164/ajrccm.155.1.9001330
PMid:9001330
32. Hills BA. What is the true role of surfactant in the lung? Thorax 1981; 36(1):1-4.
https://doi.org/10.1136/thx.36.1.1
PMid:6895267 PMCid:PMC471431
33. Jonson B, Lachmann B. Setting and monitoring of high-frequency jet ventilation in severe respiratory distress syndrome. Crit Care Med 1989; 17(10):1020-1024.
https://doi.org/10.1097/00003246-198910000-00011
PMid:2676344
34. Jonson B, Lachmann B, Fletcher R. Monitoring of physiological parameters during high frequency ventilation (HFV). Acta Anaesthesiol Scand Suppl 1989; 90:165-169.
https://doi.org/10.1111/j.1399-6576.1989.tb03026.x
PMid:2648735
35. Lachmann B, Schairer W, Hafner Met al. Volume-controlled ventilation with superimposed high frequency ventilation during expiration in healthy and surfactant-depleted pig lungs. Acta Anaesthesiol Scand Suppl 1989; 90:117-119.
https://doi.org/10.1111/j.1399-6576.1989.tb03015.x
PMid:2929251
36. Johnson B. Postive airway pressure: some physcial and biological effects. In: Prakash O, editor. Applied physiology in clinical respiratory care. The Hague, Netherlands: Martinus Nojhoff Publishers, 1982:125-139.
https://doi.org/10.1007/978-94-009-7567-5_8
37. Svantesson C, Sigurdsson S, Larsson A, Jonson B. Effects of recruitment of collapsed lung units on the elastic pressure-volume relationship in anaesthetised healthy adults. Acta Anaesthesiol Scand 1998; 42(10):1149-1156.
https://doi.org/10.1111/j.1399-6576.1998.tb05268.x
PMid:9834796
38. Jonson B. Elastic pressure-volume curves in acute lung injury and acute respiratory distress syndrome. Intensive Care Med 2005; 31(2):205-212.
https://doi.org/10.1007/s00134-004-2517-9
PMid:15605228
39. Jonson B, Svantesson C. Elastic pressure-volume curves: what information do they convey? Thorax 1999;5 4(1):82-87.
https://doi.org/10.1136/thx.54.1.82
PMid:10343639 PMCid:PMC1745341
40. Richard JC, Maggiore SM, Jonson B, et al. Influence of tidal volume on alveolar recruitment. Respective role of PEEP and a recruitment maneuver. Am J Respir Crit Care Med 2001; 163(7):1609-1613.
https://doi.org/10.1164/ajrccm.163.7.2004215
PMid:11401882
41. Richard JC, Brochard L, Vandelet P, et al. Respective effects of end-expiratory and end-inspiratory pressures on alveolar recruitment in acute lung injury. Crit Care Med 2003; 31(1):89-92.
https://doi.org/10.1097/00003246-200301000-00014
PMid:12544999
42. Maggiore SM, Jonson B, Richard JC, et al. Alveolar derecruitment at decremental positive end-expiratory pressure levels in acute lung injury: comparison with the lower inflection point, oxygenation, and compliance. Am J Respir Crit Care Med 2001; 164(5):795-801.
https://doi.org/10.1164/ajrccm.164.5.2006071
PMid:11549535
43. Jonson B, Richard JC, Straus C, et al. Pressure-volume curves and compliance in acute lung injury: evidence of recruitment above the lower inflection point. Am J Respir Crit Care Med 1999; 159(1):1172-1178.
https://doi.org/10.1164/ajrccm.159.4.9801088
PMid:10194162
44. Similowski T, Levy P, Corbeil C, et al. Viscoelastic behavior of lung and chest wall in dogs determined by flow interruption. J Appl Physiol 1989; 67(6):2219-2229.
https://doi.org/10.1152/jappl.1989.67.6.2219
PMid:2606827
45. Levy P, Similowski T, Corbeil C, et al. A method for studying the static volume-pressure curves of the respiratory system during mechanical ventilation. J Crit Care 1989; 4(2):83-89.
https://doi.org/10.1016/0883-9441(89)90122-6
46. Aboab J, Niklason L, Uttman L, et al. Dead space and CO2 elimination related to pattern of inspiratory gas delivery in ARDS patients. Crit Care 2012; 16(2):R39.
https://doi.org/10.1186/cc11232
PMid:22390777 PMCid:PMC3964798
47. Aboab J, Niklason L, Uttman L, et al CO2 elimination at varying inspiratory pause in acute lung injury. Clin Physiol Funct Imaging 2007; 27(1):2-6.
https://doi.org/10.1111/j.1475-097X.2007.00699.x
PMid:17204030
48. Sturesson LW, Malmkvist G, Allvin S, et al. An appropriate inspiratory flow pattern can enhance CO2 exchange, facilitating protective ventilation of healthy lungs. Br J Anaesth 2016; 117(2):243-249.
https://doi.org/10.1093/bja/aew194
PMid:27440637
49. Uttman L, Jonson B. A prolonged postinspiratory pause enhances CO2 elimination by reducing airway dead space. Clin Physiol Funct Imaging 2003; 23(5):252-256.
https://doi.org/10.1046/j.1475-097X.2003.00498.x
PMid:12950321
50. De Robertis E, Servillo G, Jonson B, et al. Aspiration of dead space allows normocapnic ventilation at low tidal volumes in man. Intensive Care Med 1999; 25(7):674-679.
https://doi.org/10.1007/s001340050929
PMid:10470570
51. De Robertis E, Servillo G, Tufano R, et al. Aspiration of dead space allows isocapnic low tidal volume ventilation in acute lung injury. Relationships to gas exchange and mechanics. Intensive Care Med 2001; 27(9):1496-1503.
https://doi.org/10.1007/s001340101046
PMid:11685343
52. De Robertis E, Sigurdsson SE, Drefeldt B, et al. Aspiration of airway dead space. A new method to enhance CO2 elimination. Am J Respir Crit Care Med 1999; 159(3):728-732.
https://doi.org/10.1164/ajrccm.159.3.9712140
PMid:10051243
53. De Robertis E, Uttman L, Jonson B. Re-inspiration of CO2 from ventilator circuit: effects of circuit flushing and aspiration of dead space up to high respiratory rate. Crit Care 2010; 14(2):R73
https://doi.org/10.1186/cc8986
PMid:20420671 PMCid:PMC2887196
54. Uttman L, Bitzen U, De Robertis Eet al. Protective ventilation in experimental acute respiratory distress syndrome after ventilator-induced lung injury: a randomized controlled trial. Br J Anaesth 2012; 109(4):584-594.
https://doi.org/10.1093/bja/aes230
PMid:22846562 PMCid:PMC9150023
55. Jonson B. Volumetric capnography for noninvasive monitoring of acute respiratory distress syndrome. Am J Respir Crit Care Med 2018; 198(3):396-398.
https://doi.org/10.1164/rccm.201801-0093LE
PMid:29570350