Alveolar air leak and paraseptal emphysema in severe COVID-19 disease

Atabak Najafi, Farahnaz Fallahian, Arezoo Ahmadi, Khadijeh Bakhtavar

Cite

Najafi A, Fallahian F, Ahmadi A, Bakhtavar K. Alveolar air leak and paraseptal emphysema in severe COVID-19 disease. J Mech Vent 2021; 2(4):114-123.

Abstract

Background

Corona virus 2019 (COVID-19) pandemic spread in the world as a great medical crisis. Its pathophysiology, manifestations, complications, and management are not completely defined, yet. In this study frequency of alveolar air leak in critically ill COVID-19 subjects is explored.

Methods

A total of 820 critically ill COVID-19 subjects who admitted with respiratory insufficiency to ICUs of Sina University Hospital from March 2020 to June 2021 were included. All their chest x ray (CXR) and Computed tomography (CT) of chest were reviewed. All alveolar air leak episodes (pneumothorax, pneumomediastinum, pneumopericardium, subcutaneous emphysema) suspected films reviewed by attending intensivist and radiologist.

Results

Of the 820 ill COVID-19 subjects in ICUs, 492(60%) were male, and 328 (40%) were female. The Mean age of 820 subjects was 60.84 + 16.82. 584 (71.22%) of subjects were non-intubated, and 236 (28.78%) were intubated. Alveolar air leak occurred in 98 (11.95%) of subjects. Alveolar air leak episodes include pneumothorax in 26 (3.17%), subcutaneous emphysema in 72 (8.78%), pneumomediastinum in 9 (1.10%), and pneumopericardium in 1 (0.12%) of subjects.

The mean age in non-intubated subjects was 59.65 + 16.84, and for intubated subjects was 63 + 16.42. There was a significant difference in age between the groups who get intubated, versus not intubated P 0.001.

Of the 584 non-intubated subjects, 31 (5.31%) had subcutaneous emphysema, of the 236 intubated subjects, 41 (17.37%) had subcutaneous emphysema. Difference between groups was statistically significant, P <0.001. When we compared intubated and non-intubated patients in case of total numbers of alveolar air leak episodes, the difference was statistically significant P <0.001.

Conclusion

According to this study, intubation was implemented more in older patients. Also, invasive ventilation was significantly associated with subcutaneous emphysema and total number of alveolar air leak episodes. In every patient with exaggeration of hypoxia, dyspnea or chest pain, pneumothorax should be kept in mind as a differential diagnosis.

Keywords

COVID-19; Respiratory failure; Alveolar air leak; Paraseptal emphysema

References

1. Perlman S. Another decade, another coronavirus. N Engl J Med 2020; 382(8):760-762.
https://doi.org/10.1056/NEJMe2001126
PMid:31978944 PMCid:PMC7121143 

2. Tan E, Song J, Deane A M, et al. Global impact of coronavirus disease 2019 infection requiring admission to the ICU: A systematic review and meta-analysis. Chest 2021; 159(2):524-536.
https://doi.org/10.1016/j.chest.2020.10.014
PMid:33069725 PMCid:PMC7557272 

3. Estenssoro E, Loudet CI, Ríos FG, et al, SATI-COVID-19 Study Group. Clinical characteristics and outcomes of invasively ventilated patients with COVID-19 in Argentina (SATICOVID): a prospective, multicenter cohort study. Lancet Respir Med 2021; 9:989-998.
https://doi.org/10.1016/S2213-2600(21)00229-0

4. McGuinness G, Zhan Ch, Rosenberg N, et al. Increased incidence of barotrauma in patients with COVID-19 on invasive mechanical ventilation. Radiology 2020; 297(2): E252-E262.
https://doi.org/10.1148/radiol.2020202352
PMid:32614258 PMCid:PMC7336751 

5. Das KM, Lee EY, Al Jawder SE, et al. Acute middle east respiratory syndrome coronavirus: temporal lung changes observed on the chest radiographs of 55 patients. Am J Roentgenol 2015; 205(3):W267-W274.
https://doi.org/10.2214/AJR.15.14445
PMid:26102309 

6. Joshi S, Bhatia A, Tayal N, et al. Alveolar air leak syndrome a potential complication of COVID- 19-ARDS – single center retrospective analysis. J Assoc Physicians India 2021; 69(1):22-26. 

7. Adhikary AB, R U, Patel NB, et al. Spectrum of pneumothorax/pneumomediastinum in patients with coronavirus disease 2019. Qatar Med J 2021; (2):41.
https://doi.org/10.5339/qmj.2021.41
PMid:34604018 PMCid:PMC8473938 

8. Sabharwal P, Chakraborty S, Tyagi N, et al. Spontaneous air-leak syndrome and COVID-19: A multifaceted challenge. Indian J Crit Care Med 2021; (5):584-587.
https://doi.org/10.5005/jp-journals-10071-23819
PMid:34177180 PMCid:PMC8196390 

9. Elhakim TS, Abdul HS, Pelaez Romero C, et al. Spontaneous pneumomediastinum, pneumothorax and subcutaneous emphysema in COVID-19 pneumonia: a rare case and literature review. BMJ Case Rep 2020; 13(12): e239489.
https://doi.org/10.1136/bcr-2020-239489
PMid:33310838 PMCid:PMC7735137 

10. Guo HH, Sweeney RT, Regula D, et al. Best cases from the AFIP: Fatal 2009 Influenza A (H1N1) infection, complicated by acute respiratory distress syndrome and pulmonary interstitial emphysema. RadioGraphics 2010; (2):327-333.
https://doi.org/10.1148/rg.302095213
PMid:20068001 

11. Fowler RA, Lapinsky SE, Hallett D, et al, Toronto SARS Critical Care Group. Critically ill patients with severe acute respiratory syndrome. JAMA 2003; 290(3):367-373.
https://doi.org/10.1001/jama.290.3.367
PMid:12865378 

12. Writing Group for the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial (ART) Investigators, Cavalcanti AB, Suzumura ÉA, Laranjeira LN, et al. Effect of lung recruitment and titrated positive end-expiratory pressure (PEEP) vs low PEEP on mortality in patients with acute respiratory distress syndrome: A randomized clinical trial. JAMA 2017; 318(14):1335-1345. 13. Reddy R, Chen K, Dewaswala N, et al. High incidence of spontaneous pneumothorax in critically ill patients with SARS-COV-2. Chest 2020; 158(4):A1191.
https://doi.org/10.1016/j.chest.2020.08.1084
PMCid:PMC7548585 

14. Kallet RH. 2020 Year in review: Mechanical ventilation during the first year of the COVID-19 pandemic. Resp Care 2021; 66(8):1341-1362.
https://doi.org/10.4187/respcare.09257
PMid:33972456 

15. Gattinoni L, Chiumello D, Caironi P, et al. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med 2020; 46(6):1099-1102.
https://doi.org/10.1007/s00134-020-06033-2
PMid:32291463 PMCid:PMC7154064 

16. Tobin MJ. Does making a diagnosis of ARDS in patients with coronavirus disease 2019 matter? Chest 2020; 158(6):2275-2277.
https://doi.org/10.1016/j.chest.2020.07.028
PMid:32707184 PMCid:PMC7373003 

17. Tsolaki V, Siempos I, Magira E, et al. PEEP levels in COVID-19 pneumonia. Crit Care 2020; 24(1):303.
https://doi.org/10.1186/s13054-020-03049-4
PMid:32505186 PMCid:PMC7275848 

18. Antonelli M, Conti G, Moro ML, et al. Predictors of failure of noninvasive positive pressure ventilation in patients with acute hypoxemic respiratory failure: a multi-center study. Intensive Care Med 2001; 27(11):1718-1728.
https://doi.org/10.1007/s00134-001-1114-4
PMid:11810114 

19. Bellani G, Laffey JG, Pham T, et al. Noninvasive ventilation of patients with acute respiratory distress syndrome. Insights from the LUNG SAFE study. Am J Respir Crit Care Med 2017; 195(1):67-77.
https://doi.org/10.1164/rccm.201606-1306OC
PMid:27753501 

20. Antonelli M, Conti G, Esquinas A, et al. A multiple-center survey on the use in clinical practice of noninvasive ventilation as a first-line intervention for acute respiratory distress syndrome. Crit Care Med 2007; 35(1):18-25.
https://doi.org/10.1097/01.CCM.0000251821.44259.F3
PMid:17133177 

21. Chawla R, Mansuriya J, Modi N, et al. acute respiratory distress syndrome: predictors of noninvasive ventilation failure and intensive care unit mortality in clinical practice. J Crit Care 2016; 31(1):26-30.
https://doi.org/10.1016/j.jcrc.2015.10.018
PMid:26643859 

22. Thille AW, Contou D, Fragnoli C, et al. Non-invasive ventilation for acute hypoxemic respiratory failure: intubation rate and risk factors. Crit Care 2013; 17(6):R269.
https://doi.org/10.1186/cc13103
PMid:24215648 PMCid:PMC4057073 

23. Yoshida Y, Takeda S, Akada S, et al. Factors predicting successful noninvasive ventilation in acute lung injury. J Anesth 2008; 22(3):201-206.
https://doi.org/10.1007/s00540-008-0637-z
PMid:18685924 

24. Sehgal IS, Chaudhuri S, Dhooria S, et al. A study on the role of noninvasive ventilation in mild-to-moderate acute respiratory distress syndrome. Indian J Crit Care Med 2015; 19(10):593-599.
https://doi.org/10.4103/0972-5229.167037
PMid:26628824 PMCid:PMC4637959 

25. Suttapanit K, Boriboon J, Sanguanwit P. Risk factors for non-invasive ventilation failure in influenza infection with acute respiratory failure in emergency department. Am J Emerg Med 2020; 38(9):1901-1907.
https://doi.org/10.21203/rs.3.rs-28750/v1

26. Karagiannidis C, Mostert C, Hentschker C, et al. Case characteristics, resource use, and outcomes of 10 021 patients with COVID-19 admitted to 920 German hospitals: an observational study. Lancet Respir Med 2020; 8(9):853-862.
https://doi.org/10.1016/S2213-2600(20)30316-7

27. Kathar Hussain MR, Kulasekaran N, Anand AM, et al. COVID-19 causing acute deterioration of interstitial lung disease: a case report. Egypt J Radiol Nucl Med 2021; 52(1):51.
https://doi.org/10.1186/s43055-021-00431-2
PMCid:PMC7868896 

28. Southern BD. Patients with interstitial lung disease and pulmonary sarcoidosis are at high risk for severe illness related to COVID-19. Cleve Clin J Med 2020; 6:1-4.
https://doi.org/10.3949/ccjm.87a.ccc026
PMid:32409436 

29. Yamazaki R, Nishiyama O, Gose Ket al. Pneumothorax in patients with idiopathic pulmonary fbrosis: a real-world experience. BMC Pulm Med 202; 21(1):5.
https://doi.org/10.1186/s12890-020-01370-w
PMid:33407311 PMCid:PMC7789641 

30. Martini K, Frauenfelder.T Advances in imaging for lung emphysema. Ann Transl Med 2020; 8(21):1467.
https://doi.org/10.21037/atm.2020.04.44
PMid:33313212 PMCid:PMC7723580 

31. The definition of emphysema. Report of a National Heart, Lung, and Blood Institute, Division of Lung Diseases workshop. Am Rev Respir Dis 1985; 132:182-185. 

https://doi.org/10.1164/arrd.1985.132.1.182

PMiD: 4014865

32. Leopold JG, Gough J. The centrilobular form of hypertrophic emphysema and its relation to chronic bronchitis. Thorax 1957; 12:219-235.
https://doi.org/10.1136/thx.12.3.219
PMid:13467881 PMCid:PMC1019212 

33. Hansell DM, Bankier AA, MacMahon H, et al. Fleischner Society: glossary of terms for thoracic imaging. Radiology 2008; 246:697-722.
https://doi.org/10.1148/radiol.2462070712
PMid:18195376 

34. González J, Henschke CI, Yankelevitz DF, et al. Emphysema phenotypes and lung cancer risk. PloS one 2019; 14:e0219187.
https://doi.org/10.1371/journal.pone.0219187
PMid:31344121 PMCid:PMC6657833 

35. Diaz AA. Paraseptal Emphysema: From the periphery of the lobule to the center of the stage. Am J Respir Crit Care Med 2020; 202(6):783-784.
https://doi.org/10.1164/rccm.202006-2138ED
PMid:32640164 PMCid:PMC7491391 

36. Hobbs BD, Foreman MG, Bowler R, et al. COPD Gene Investigators. Pneumothorax risk factors in smokers with and without chronic obstructive pulmonary disease. Ann Am Thorac Soc 2014; 11:1387-1394.
https://doi.org/10.1513/AnnalsATS.201405-224OC
PMid:25295410 PMCid:PMC4298989 

37. Cabanne E, Revel MP. Vanishing paraseptal emphysema after COVID-19. Radiology 2021; 229(2): E249.
https://doi.org/10.1148/radiol.2021210339
PMid:33620292 PMCid:PMC7903986 

38. Henschke CI, Yankelevitz DF, Wand A, et al. Accuracy and efficacy of chest radiography in the intensive care unit. Radiol Clin North Am 1996; 34:21-31.
https://doi.org/10.1016/0899-7071(95)00097-6

39. Volpicelli G. Sonographic diagnosis of pneumothorax. Intensive Care Med 2011; 37(2):224-232.
https://doi.org/10.1007/s00134-010-2079-y
PMid:21103861 

40. Lichtenstein DA, Menu Y. A bedside ultrasound sign ruling out pneumothorax in the critically ill. Lung sliding. Chest 1995; 108(5):1345-1348.
https://doi.org/10.1378/chest.108.5.1345
PMid:7587439 

41. Lichtenstein D, Mezière G, Biderman P, et al. The “lung point”: an ultrasound sign specific to pneumothorax. Intensive Care Med 2000; 26(10):1434-1440.
https://doi.org/10.1007/s001340000627
PMid:11126253 

42. Lichtenstein DA. Ultrasound in the management of thoracic disease. Crit Care Med 2007; 35(5 Suppl):S250-261.
https://doi.org/10.1097/01.CCM.0000260674.60761.85
PMid:17446785 

43. Lichtenstein DA, Lascols N, Prin S, et al. The “lung pulse”: an early ultrasound sign of complete atelectasis. Intensive Care Med. 2003; 29(12):2187-2192
https://doi.org/10.1007/s00134-003-1930-9
PMid:14557855 

44. Slater A, Goodwin M, Anderson KE, et al. COPD can mimic the appearance of pneumothorax on thoracic ultrasound. Chest 2006; 129:545-550.
https://doi.org/10.1378/chest.129.3.545
PMid:16537850 

45. Lichtenstein D, Mezière G, Biderman P, et al. The comet-tail artifact: an ultrasound sign ruling out pneumothorax. Intensive Care Med 1999; 25(4):383-388.
https://doi.org/10.1007/s001340050862
PMid:10342512 

46. Campione A, Luzzi L, Gorla A, et al. About ultrasound diagnosis of pulmonary bullae vs. pneumothorax. J Emerg Med 2010; 38(3):384-385; author reply 385.
https://doi.org/10.1016/j.jemermed.2008.07.035
PMid:19926433 

47. Simonpietri M, Shokry M, Daoud EG. Electrical Impedance Tomography: the future of mechanical ventilation? J Mech Vent 2021; 2(2):64-70.
https://doi.org/10.53097/JMV.10024